
Context
AllLife	Bank	wants	to	focus	on	its	credit	card	customer	base	in	the	next	financial	year.	They	have	been	advised	by	their	marketing	research
team,	that	the	penetration	in	the	market	can	be	improved.	Based	on	this	input,	the	Marketing	team	proposes	to	run	personalized	campaigns
to	target	new	customers	as	well	as	upsell	to	existing	customers.	Another	insight	from	the	market	research	was	that	the	customers	perceive
the	support	services	of	the	back	poorly.	Based	on	this,	the	Operations	team	wants	to	upgrade	the	service	delivery	model,	to	ensure	that
customer	queries	are	resolved	faster.	Head	of	Marketing	and	Head	of	Delivery	both	decide	to	reach	out	to	the	Data	Science	team	for	help

Objective
To	identify	different	segments	in	the	existing	customer,	based	on	their	spending	patterns	as	well	as	past	interaction	with	the	bank,	using
clustering	algorithms,	and	provide	recommendations	to	the	bank	on	how	to	better	market	to	and	service	these	customers.

Data	Description
The	data	provided	is	of	various	customers	of	a	bank	and	their	financial	attributes	like	credit	limit,	the	total	number	of	credit	cards	the	customer
has,	and	different	channels	through	which	customers	have	contacted	the	bank	for	any	queries	(including	visiting	the	bank,	online	and	through
a	call	center).

Data	Dictionary

Sl_No:	Primary	key	of	the	records
Customer	Key:	Customer	identification	number
Average	Credit	Limit:	Average	credit	limit	of	each	customer	for	all	credit	cards
Total	credit	cards:	Total	number	of	credit	cards	possessed	by	the	customer
Total	visits	bank:	Total	number	of	Visits	that	customer	made	(yearly)	personally	to	the	bank
Total	visits	online:	Total	number	of	visits	or	online	logins	made	by	the	customer	(yearly)
Total	calls	made:	Total	number	of	calls	made	by	the	customer	to	the	bank	or	its	customer	service	department	(yearly)

Coding

Importing	necessary	libraries

#	this	will	help	in	making	the	Python	code	more	structured	automatically	(good	coding	practice)
%load_ext	nb_black

#	Libraries	to	help	with	reading	and	manipulating	data
import	pandas	as	pd
import	numpy	as	np

#	libaries	to	help	with	data	visualization
import	matplotlib.pyplot	as	plt
import	seaborn	as	sns

#	Removes	the	limit	for	the	number	of	displayed	columns
pd.set_option("display.max_columns",	None)
#	Sets	the	limit	for	the	number	of	displayed	rows
pd.set_option("display.max_rows",	200)

#	to	scale	the	data	using	z-score
from	sklearn.preprocessing	import	StandardScaler

#	to	compute	distances
from	scipy.spatial.distance	import	cdist,	pdist

#	to	perform	k-means	clustering	and	compute	silhouette	scores
from	sklearn.cluster	import	KMeans
from	sklearn.metrics	import	silhouette_score

#	to	visualize	the	elbow	curve	and	silhouette	scores
from	yellowbrick.cluster	import	KElbowVisualizer,	SilhouetteVisualizer

#	to	perform	hierarchical	clustering,	compute	cophenetic	correlation,	and	create	dendrograms
from	sklearn.cluster	import	AgglomerativeClustering
from	scipy.cluster.hierarchy	import	dendrogram,	linkage,	cophenet

#	loading	the	dataset
data	=	pd.read_excel("Credit	Card	Customer	Data.xlsx")

(660,	7)

The	dataset	has	660	rows	and	7	columns

Sl_No Customer	Key Avg_Credit_Limit Total_Credit_Cards Total_visits_bank Total_visits_online Total_calls_made

0 1 87073 100000 2 1 1 0

1 2 38414 50000 3 0 10 9

2 3 17341 50000 7 1 3 4

3 4 40496 30000 5 1 1 4

4 5 47437 100000 6 0 12 3

<class	'pandas.core.frame.DataFrame'>
RangeIndex:	660	entries,	0	to	659
Data	columns	(total	7	columns):
	#			Column															Non-Null	Count		Dtype
---		------															--------------		-----
	0			Sl_No																660	non-null				int64
	1			Customer_Key									660	non-null				int64
	2			Avg_Credit_Limit					660	non-null				int64
	3			Total_Credit_Cards			660	non-null				int64
	4			Total_visits_bank				660	non-null				int64
	5			Total_visits_online		660	non-null				int64
	6			Total_calls_made					660	non-null				int64
dtypes:	int64(7)
memory	usage:	36.2	KB

All	the	columns	in	the	data	are	numeric.

Sl_No																		0
Customer_Key											0
Avg_Credit_Limit							0
Total_Credit_Cards					0
Total_visits_bank						0
Total_visits_online				0
Total_calls_made							0
dtype:	int64

There	are	no	missing	values	in	the	data.

data.shape

#	viewing	the	first	5	rows	of	the	data
data.head()

#	copying	the	data	to	another	variable	to	avoid	any	changes	to	original	data
df	=	data.copy()

#	fixing	column	names
df.columns	=	[c.replace("	",	"_")	for	c	in	df.columns]

#	checking	datatypes	and	number	of	non-null	values	for	each	column
df.info()

#	checking	for	missing	values
df.isnull().sum()

There	are	no	missing	values	in	the	data.

Sl_No																		660
Customer	Key											655
Avg_Credit_Limit							110
Total_Credit_Cards						10
Total_visits_bank								6
Total_visits_online					16
Total_calls_made								11
dtype:	int64

There	are	less	unique	values	in	the	Customer_Key	column	than	the	number	of	observations	in	the	data.	This	means	that	there	are
duplicate	values	in	the	column.

Let's	look	at	the	duplicate	values	in	the	Customer_Key	column	closely.

Sl_No Customer	Key Avg_Credit_Limit Total_Credit_Cards Total_visits_bank Total_visits_online Total_calls_made

48 49 37252 6000 4 0 2 8

432 433 37252 59000 6 2 1 2

Sl_No Customer	Key Avg_Credit_Limit Total_Credit_Cards Total_visits_bank Total_visits_online Total_calls_made

4 5 47437 100000 6 0 12 3

332 333 47437 17000 7 3 1 0

Sl_No Customer	Key Avg_Credit_Limit Total_Credit_Cards Total_visits_bank Total_visits_online Total_calls_made

411 412 50706 44000 4 5 0 2

541 542 50706 60000 7 5 2 2

Sl_No Customer	Key Avg_Credit_Limit Total_Credit_Cards Total_visits_bank Total_visits_online Total_calls_made

391 392 96929 13000 4 5 0 0

398 399 96929 67000 6 2 2 2

Sl_No Customer	Key Avg_Credit_Limit Total_Credit_Cards Total_visits_bank Total_visits_online Total_calls_made

104 105 97935 17000 2 1 2 10

632 633 97935 187000 7 1 7 0

Observations

There	are	5	duplicate	customer	entries	in	the	data.
Most	of	these	duplicates	look	like	customer	profile	changes.
There	is	no	need	to	delete	these	records	as	these	are	actual	occurrences	at	some	point	in	the	time.

We	will	drop	the	Sl_No	and	Customer_Key	as	they	do	not	add	any	value	to	the	analysis.

#	checking	the	number	of	unique	values	in	each	column
data.nunique()

#	getting	the	count	for	each	unique	value	in	Customer_Key
data_grouped	=	df.groupby("Customer_Key").count()

for	i	in	data_grouped.loc[data_grouped.Sl_No	>=	2].index:
				display(data.loc[df.Customer_Key	==	i])

df.drop(columns=["Sl_No"],	inplace=True)
df.drop(columns=["Customer_Key"],	inplace=True)

#	Let's	look	at	the	statistical	summary	of	the	data
df.describe().T

count mean std min 25% 50% 75% max

Avg_Credit_Limit 660.0 34574.242424 37625.487804 3000.0 10000.0 18000.0 48000.0 200000.0

Total_Credit_Cards 660.0 4.706061 2.167835 1.0 3.0 5.0 6.0 10.0

Total_visits_bank 660.0 2.403030 1.631813 0.0 1.0 2.0 4.0 5.0

Total_visits_online 660.0 2.606061 2.935724 0.0 1.0 2.0 4.0 15.0

Total_calls_made 660.0 3.583333 2.865317 0.0 1.0 3.0 5.0 10.0

Observations

The	average	credit	limit	is	heavily	right-skewed	with	a	median	average	credit	limit	of	18000	dollars.
The	total	number	of	credit	cards	ranges	from	1	to	10	and	seems	to	be	evenly	distributed	with	a	close	values	of	mean	and	median.
Total_visits_bank	is	evenly	distributed,	but	there	are	some	customers	who	have	never	visited	the	bank.
Total_Visits_online	seems	to	be	right-skewed	and	there	are	some	customers	who	never	used	the	online	banking	services.
Total_calls_made	is	right-skewed	and	there	are	some	customers	who	never	preferred	to	make	any	calls	to	the	bank

EDA

Univariate	analysis

#	function	to	plot	a	boxplot	and	a	histogram	along	the	same	scale.

def	histogram_boxplot(data,	feature,	figsize=(12,	7),	kde=False,	bins=None):
				"""
				Boxplot	and	histogram	combined

				data:	dataframe
				feature:	dataframe	column
				figsize:	size	of	figure	(default	(12,7))
				kde:	whether	to	the	show	density	curve	(default	False)
				bins:	number	of	bins	for	histogram	(default	None)
				"""
				f2,	(ax_box2,	ax_hist2)	=	plt.subplots(
								nrows=2,		#	Number	of	rows	of	the	subplot	grid=	2
								sharex=True,		#	x-axis	will	be	shared	among	all	subplots
								gridspec_kw={"height_ratios":	(0.25,	0.75)},
								figsize=figsize,
)		#	creating	the	2	subplots
				sns.boxplot(
								data=data,	x=feature,	ax=ax_box2,	showmeans=True,	color="violet"
)		#	boxplot	will	be	created	and	a	star	will	indicate	the	mean	value	of	the	column
				sns.histplot(
								data=data,	x=feature,	kde=kde,	ax=ax_hist2,	bins=bins,	palette="winter"
)	if	bins	else	sns.histplot(
								data=data,	x=feature,	kde=kde,	ax=ax_hist2
)		#	For	histogram
				ax_hist2.axvline(
								data[feature].mean(),	color="green",	linestyle="--"
)		#	Add	mean	to	the	histogram
				ax_hist2.axvline(
								data[feature].median(),	color="black",	linestyle="-"
)		#	Add	median	to	the	histogram

for	col	in	df.columns:
				histogram_boxplot(data,	col)

Observations

There	are	outliers	in	the	Average_Credit_limit	column,	but	all	the	values	are	continuous,	and	the	gap	between	the	points	is	evenly
distributed.
In	general,	customers	visit	the	bank	twice	a	year,	log	in	to	the	online	portal	twice	a	year,	and	make	3	calls	to	the	customer	service.
We	see	some	outliers	in	the	Total_visits_online	column,	indicating	that	few	customers	log	in	to	the	online	portal	more	frequently	than	the
others.

#	function	to	create	labeled	barplots

def	labeled_barplot(data,	feature,	perc=False,	n=None):
				"""
				Barplot	with	percentage	at	the	top

				data:	dataframe
				feature:	dataframe	column
				perc:	whether	to	display	percentages	instead	of	count	(default	is	False)
				n:	displays	the	top	n	category	levels	(default	is	None,	i.e.,	display	all	levels)
				"""

				total	=	len(data[feature])		#	length	of	the	column
				count	=	data[feature].nunique()
				if	n	is	None:
								plt.figure(figsize=(count	+	1,	5))
				else:
								plt.figure(figsize=(n	+	1,	5))

				plt.xticks(rotation=90,	fontsize=15)
				ax	=	sns.countplot(
								data=data,
								x=feature,
								palette="Paired",
								order=data[feature].value_counts().index[:n].sort_values(),
)

				for	p	in	ax.patches:
								if	perc	==	True:
												label	=	"{:.1f}%".format(
																100	*	p.get_height()	/	total
)		#	percentage	of	each	class	of	the	category
								else:
												label	=	p.get_height()		#	count	of	each	level	of	the	category

								x	=	p.get_x()	+	p.get_width()	/	2		#	width	of	the	plot
								y	=	p.get_height()		#	height	of	the	plot

								ax.annotate(
												label,
												(x,	y),

												ha="center",
												va="center",
												size=12,
												xytext=(0,	5),
												textcoords="offset	points",
)		#	annotate	the	percentage

				plt.show()		#	show	the	plot

for	col	in	df.columns.tolist()[1:]:
				labeled_barplot(df,	col,	perc=True)

Observations

Approximately	half	the	customers	in	the	data	have	4	or	fewer	credit	cards,	and	very	few	customers	(approximately	6%)	have	more	than	7
credit	cards.
Approximately	15%	of	the	customers	have	never	visited	the	bank.
Approximately	22%	of	the	customers	have	never	logged	in	to	the	online	portal,	while	~7%	of	the	customers	used	the	online	banking
services	more	than	6	or	more	times	yearly.
Approximately	15%	of	the	customers	have	never	made	a	service-related	call	to	the	bank.

fig,	axes	=	plt.subplots(3,	2,	figsize=(15,	15))
fig.suptitle("CDF	plot	of	numerical	variables",	fontsize=20)

counter	=	0

for	ii	in	range(3):
				sns.ecdfplot(data=df,	ax=axes[ii][0],	x=df.columns.tolist()[counter])
				counter	=	counter	+	1
				if	counter	!=	5:
								sns.ecdfplot(data=df,	ax=axes[ii][1],	x=df.columns.tolist()[counter])
								counter	=	counter	+	1
				else:
								pass

fig.tight_layout(pad=2.0)

Observations

~90%	of	the	customers	have	credit	limits	of	less	than	75,000.
~90%	of	the	customers	have	less	than	7	credit	cards.
~85%	of	the	customers	visit	the	bank	less	than	4	times	a	year.
~90%	of	the	customers	visit	the	online	platform	5	times	or	less	a	year.
~90%	of	the	customers	make	8	or	fewer	calls	to	the	bank	a	year.

Bivariate	Analysis

Let's	check	for	correlations.

Observations

There	is	a	strong	negative	correlation	between	Total_Calls_made	and	Total_credit_cards.
There	is	a	strong	positive	correlation	between	Total_credit_cards	and	Avg_credit_limit,	indicating	customers	with	a	high	average	credit
limit	tend	to	have	more	credit	cards.

plt.figure(figsize=(15,	7))
sns.heatmap(df.corr(),	annot=True,	vmin=-1,	vmax=1,	fmt=".2f",	cmap="Spectral")
plt.show()

sns.pairplot(data=df,	diag_kind="kde")
plt.show()

Observations

There	no	clear	linear	correlation	between	the	variables.
Total_credit_cards	may	have	some	clusters	formed	w.r.t	other	variables.

We	can	add	a	hue	and	see	if	we	can	see	some	clustered	distributions.

sns.pairplot(
				data=df[
								[
												"Total_visits_bank",
												"Total_visits_online",
												"Total_calls_made",
												"Total_Credit_Cards",
]
],
				hue="Total_Credit_Cards",
)

plt.show()

Observations

Total_Credit_Cards	seem	to	be	higher	for	customers	with	higher	visits	online	and	lesser	phone	calls	made.
Customers	who	made	more	phone	calls	to	the	bank	seem	to	have	fewer	credit	cards.

Let's	visualize	the	modes	of	contacting	the	bank	in	a	3D	plot.

We	can	observe	three	segments	of	the	customers	by	their	preferred	mode	of	contacting	the	bank.

Data	Preprocessing

Outlier	Detection

from	mpl_toolkits.mplot3d	import	Axes3D

fig	=	plt.figure(figsize=(10,	10))
ax	=	plt.axes(projection="3d")

x	=	df["Total_visits_bank"]
y	=	df["Total_visits_online"]
z	=	df["Total_calls_made"]

ax.scatter(x,	y,	z,	marker=".")
ax.set_xlabel("Total_visits_bank")
ax.set_ylabel("Total_visits_online")
ax.set_zlabel("Total_calls_made")
ax.view_init(azim=60)
plt.show()

Let's	find	outliers	in	the	data	using	z-score	with	a	threshold	of	3.

The	following	are	the	outliers	in	the	data:

	Avg_Credit_Limit	:	[153000,	155000,	156000,	156000,	157000,	158000,	163000,	163000,	166000,	166000,	167000,	1710
00,	172000,	172000,	173000,	176000,	178000,	183000,	184000,	186000,	187000,	195000,	195000,	200000]

	Total_Credit_Cards	:	[]

	Total_visits_bank	:	[]

	Total_visits_online	:	[12,	12,	12,	12,	12,	12,	13,	13,	13,	13,	13,	14,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15]

	Total_calls_made	:	[]

Observations

There	are	outliers	in	the	columns	Avg_Credit_Limit	and	Total_Visits_online.
We	will	not	treat	the	outliers	as	most	of	those	outliers	are	not	disjoint	from	the	curve	(continues	curve).
These	outliers	might	also	form	their	own	cluster.

Scaling

Let's	scale	the	data	before	we	proceed	with	clustering.

K-means	Clustering

threshold	=	3
outlier	=	{}
for	col	in	df.columns:
				i	=	df[col]
				mean	=	np.mean(df[col])
				std	=	np.std(df[col])
				list1	=	[]
				for	v	in	i:
								z	=	(v	-	mean)	/	std
								if	z	>	threshold:
												list1.append(v)
				list1.sort()
				outlier[i.name]	=	list1

print("The	following	are	the	outliers	in	the	data:")
for	key,	value	in	outlier.items():
				print("\n",	key,	":",	value)

#	scaling	the	data	before	clustering
scaler	=	StandardScaler()
subset	=	df.copy()
subset_scaled	=	scaler.fit_transform(subset)

#	creating	a	dataframe	of	the	scaled	data
subset_scaled_df	=	pd.DataFrame(subset_scaled,	columns=subset.columns)

k_means_df	=	subset_scaled_df.copy()

clusters	=	range(1,	9)
meanDistortions	=	[]

for	k	in	clusters:
				model	=	KMeans(n_clusters=k,	random_state=1)
				model.fit(subset_scaled_df)
				prediction	=	model.predict(k_means_df)
				distortion	=	(
								sum(np.min(cdist(k_means_df,	model.cluster_centers_,	"euclidean"),	axis=1))
								/	k_means_df.shape[0]
)

Number	of	Clusters:	1		 Average	Distortion:	2.0069222262503614
Number	of	Clusters:	2		 Average	Distortion:	1.4571553548514269
Number	of	Clusters:	3		 Average	Distortion:	1.1466276549150365
Number	of	Clusters:	4		 Average	Distortion:	1.0463825294774465
Number	of	Clusters:	5		 Average	Distortion:	0.9908683849620168
Number	of	Clusters:	6		 Average	Distortion:	0.9426543606899347
Number	of	Clusters:	7		 Average	Distortion:	0.9093991915419353
Number	of	Clusters:	8		 Average	Distortion:	0.8843243844476886

The	appropriate	value	of	k	from	the	Elbow	curve	seems	to	be	2	or	3.

<AxesSubplot:title={'center':'Distortion	Score	Elbow	for	KMeans	Clustering'},	xlabel='k',	ylabel='distortion	scor
e'>

Let's	check	the	silhouette	scores.

				meanDistortions.append(distortion)

				print("Number	of	Clusters:",	k,	"\tAverage	Distortion:",	distortion)

plt.plot(clusters,	meanDistortions,	"bx-")
plt.xlabel("k")
plt.ylabel("Average	Distortion")
plt.title("Selecting	k	with	the	Elbow	Method",	fontsize=20)
plt.show()

model	=	KMeans(random_state=1)
visualizer	=	KElbowVisualizer(model,	k=(2,	10),	timings=True)
visualizer.fit(k_means_df)		#	fit	the	data	to	the	visualizer
visualizer.show()		#	finalize	and	render	figure

sil_score	=	[]

For	n_clusters	=	2,	the	silhouette	score	is	0.41842496663230405)
For	n_clusters	=	3,	the	silhouette	score	is	0.5157182558882754)
For	n_clusters	=	4,	the	silhouette	score	is	0.355667061937737)
For	n_clusters	=	5,	the	silhouette	score	is	0.2717470361094591)
For	n_clusters	=	6,	the	silhouette	score	is	0.25590676529850875)
For	n_clusters	=	7,	the	silhouette	score	is	0.2479864465613871)
For	n_clusters	=	8,	the	silhouette	score	is	0.2414240144772954)
For	n_clusters	=	9,	the	silhouette	score	is	0.21846450507663684)

<AxesSubplot:title={'center':'Silhouette	Score	Elbow	for	KMeans	Clustering'},	xlabel='k',	ylabel='silhouette	scor
e'>

From	the	silhouette	scores,	it	seems	that	3	is	a	good	value	for	k.

sil_score	=	[]
cluster_list	=	range(2,	10)
for	n_clusters	in	cluster_list:
				clusterer	=	KMeans(n_clusters=n_clusters,	random_state=1)
				preds	=	clusterer.fit_predict((subset_scaled_df))
				score	=	silhouette_score(k_means_df,	preds)
				sil_score.append(score)
				print("For	n_clusters	=	{},	the	silhouette	score	is	{})".format(n_clusters,	score))

plt.plot(cluster_list,	sil_score)
plt.show()

model	=	KMeans(random_state=1)
visualizer	=	KElbowVisualizer(model,	k=(2,	30),	metric="silhouette",	timings=True)
visualizer.fit(k_means_df)		#	fit	the	data	to	the	visualizer
visualizer.show()		#	finalize	and	render	figure

#	finding	optimal	no.	of	clusters	with	silhouette	coefficients

<AxesSubplot:title={'center':'Silhouette	Plot	of	KMeans	Clustering	for	660	Samples	in	5	Centers'},	xlabel='silhou
ette	coefficient	values',	ylabel='cluster	label'>

<AxesSubplot:title={'center':'Silhouette	Plot	of	KMeans	Clustering	for	660	Samples	in	4	Centers'},	xlabel='silhou
ette	coefficient	values',	ylabel='cluster	label'>

#	finding	optimal	no.	of	clusters	with	silhouette	coefficients
visualizer	=	SilhouetteVisualizer(KMeans(5,	random_state=1))
visualizer.fit(k_means_df)
visualizer.show()

#	finding	optimal	no.	of	clusters	with	silhouette	coefficients
visualizer	=	SilhouetteVisualizer(KMeans(4,	random_state=1))
visualizer.fit(k_means_df)
visualizer.show()

#	finding	optimal	no.	of	clusters	with	silhouette	coefficients
visualizer	=	SilhouetteVisualizer(KMeans(3,	random_state=1))
visualizer.fit(k_means_df)
visualizer.show()

<AxesSubplot:title={'center':'Silhouette	Plot	of	KMeans	Clustering	for	660	Samples	in	3	Centers'},	xlabel='silhou
ette	coefficient	values',	ylabel='cluster	label'>

<AxesSubplot:title={'center':'Silhouette	Plot	of	KMeans	Clustering	for	660	Samples	in	2	Centers'},	xlabel='silhou
ette	coefficient	values',	ylabel='cluster	label'>

Observations

The	silhouette	coefficient	for	3	clusters	is	the	highest.
We	can	also	see	that	the	score	for	3	clusters	is	close	to	the	average	score	and	the	shape	of	the	clusters	is	very	uniform	in
SilhouetteVisualizer,	even	though	the	magnitude	may	be	different.
So,	we	will	proceed	with	3	clusters.

KMeans(n_clusters=3,	random_state=0)

Hierarchical	Clustering

#	finding	optimal	no.	of	clusters	with	silhouette	coefficients
visualizer	=	SilhouetteVisualizer(KMeans(2,	random_state=1))
visualizer.fit(k_means_df)
visualizer.show()

kmeans	=	KMeans(n_clusters=3,	random_state=0)
kmeans.fit(k_means_df)

#	creating	a	copy	of	the	original	data
df1	=	df.copy()

#	adding	kmeans	cluster	labels	to	the	original	and	scaled	dataframes
k_means_df["K_means_segments"]	=	kmeans.labels_
df1["K_means_segments"]	=	kmeans.labels_

hc_df	=	subset_scaled_df.copy()

Cophenetic	correlation	for	Euclidean	distance	and	single	linkage	is	0.7391220243806552.
Cophenetic	correlation	for	Euclidean	distance	and	complete	linkage	is	0.8599730607972423.
Cophenetic	correlation	for	Euclidean	distance	and	average	linkage	is	0.8977080867389372.
Cophenetic	correlation	for	Euclidean	distance	and	weighted	linkage	is	0.8861746814895477.
Cophenetic	correlation	for	Chebyshev	distance	and	single	linkage	is	0.7382354769296767.
Cophenetic	correlation	for	Chebyshev	distance	and	complete	linkage	is	0.8533474836336782.
Cophenetic	correlation	for	Chebyshev	distance	and	average	linkage	is	0.8974159511838106.
Cophenetic	correlation	for	Chebyshev	distance	and	weighted	linkage	is	0.8913624010768603.
Cophenetic	correlation	for	Mahalanobis	distance	and	single	linkage	is	0.7058064784553605.
Cophenetic	correlation	for	Mahalanobis	distance	and	complete	linkage	is	0.6663534463875362.
Cophenetic	correlation	for	Mahalanobis	distance	and	average	linkage	is	0.8326994115042136.
Cophenetic	correlation	for	Mahalanobis	distance	and	weighted	linkage	is	0.780599061514252.
Cophenetic	correlation	for	Cityblock	distance	and	single	linkage	is	0.7252379350252723.
Cophenetic	correlation	for	Cityblock	distance	and	complete	linkage	is	0.8731477899179829.
Cophenetic	correlation	for	Cityblock	distance	and	average	linkage	is	0.896329431104133.
Cophenetic	correlation	for	Cityblock	distance	and	weighted	linkage	is	0.8825520731498188.

Highest	cophenetic	correlation	is	0.8977080867389372,	which	is	obtained	with	Euclidean	distance	and	average	linka
ge.

Let's	explore	different	linkage	methods	with	Euclidean	distance	only.

Cophenetic	correlation	for	single	linkage	is	0.7391220243806552.
Cophenetic	correlation	for	complete	linkage	is	0.8599730607972423.
Cophenetic	correlation	for	average	linkage	is	0.8977080867389372.
Cophenetic	correlation	for	centroid	linkage	is	0.8939385846326323.
Cophenetic	correlation	for	ward	linkage	is	0.7415156284827493.
Cophenetic	correlation	for	weighted	linkage	is	0.8861746814895477.

#	list	of	distance	metrics
distance_metrics	=	["euclidean",	"chebyshev",	"mahalanobis",	"cityblock"]

#	list	of	linkage	methods
linkage_methods	=	["single",	"complete",	"average",	"weighted"]

high_cophenet_corr	=	0
high_dm_lm	=	[0,	0]

for	dm	in	distance_metrics:
				for	lm	in	linkage_methods:
								Z	=	linkage(hc_df,	metric=dm,	method=lm)
								c,	coph_dists	=	cophenet(Z,	pdist(hc_df))
								print(
												"Cophenetic	correlation	for	{}	distance	and	{}	linkage	is	{}.".format(
																dm.capitalize(),	lm,	c
)
)
								if	high_cophenet_corr	<	c:
												high_cophenet_corr	=	c
												high_dm_lm[0]	=	dm
												high_dm_lm[1]	=	lm

#	printing	the	combination	of	distance	metric	and	linkage	method	with	the	highest	cophenetic	correlation
print(
				"Highest	cophenetic	correlation	is	{},	which	is	obtained	with	{}	distance	and	{}	linkage.".format(
								high_cophenet_corr,	high_dm_lm[0].capitalize(),	high_dm_lm[1]
)
)

#	list	of	linkage	methods
linkage_methods	=	["single",	"complete",	"average",	"centroid",	"ward",	"weighted"]

high_cophenet_corr	=	0
high_dm_lm	=	[0,	0]

for	lm	in	linkage_methods:
				Z	=	linkage(hc_df,	metric="euclidean",	method=lm)
				c,	coph_dists	=	cophenet(Z,	pdist(hc_df))
				print("Cophenetic	correlation	for	{}	linkage	is	{}.".format(lm,	c))
				if	high_cophenet_corr	<	c:
								high_cophenet_corr	=	c
								high_dm_lm[0]	=	"euclidean"
								high_dm_lm[1]	=	lm

Highest	cophenetic	correlation	is	0.8977080867389372,	which	is	obtained	with	average	linkage.

We	see	that	the	cophenetic	correlation	is	maximum	with	Euclidean	distance	and	average	linkage.

Let's	view	the	dendrograms	for	the	different	linkage	methods.

#	printing	the	combination	of	distance	metric	and	linkage	method	with	the	highest	cophenetic	correlation
print()
print(
				"Highest	cophenetic	correlation	is	{},	which	is	obtained	with	{}	linkage.".format(
								high_cophenet_corr,	high_dm_lm[1]
)
)

#	list	of	linkage	methods
linkage_methods	=	["single",	"complete",	"average",	"centroid",	"ward",	"weighted"]

#	lists	to	save	results	of	cophenetic	correlation	calculation
compare_cols	=	["Linkage",	"Cophenetic	Coefficient"]
compare	=	[]

#	to	create	a	subplot	image
fig,	axs	=	plt.subplots(len(linkage_methods),	1,	figsize=(15,	30))

#	We	will	enumerate	through	the	list	of	linkage	methods	above
#	For	each	linkage	method,	we	will	plot	the	dendrogram	and	calculate	the	cophenetic	correlation
for	i,	method	in	enumerate(linkage_methods):
				Z	=	linkage(hc_df,	metric="euclidean",	method=method)

				dendrogram(Z,	ax=axs[i])
				axs[i].set_title(f"Dendrogram	({method.capitalize()}	Linkage)")

				coph_corr,	coph_dist	=	cophenet(Z,	pdist(hc_df))
				axs[i].annotate(
								f"Cophenetic\nCorrelation\n{coph_corr:0.2f}",
								(0.80,	0.80),
								xycoords="axes	fraction",
)

				compare.append([method,	coph_corr])

Dendrogram	with	average	linkage	shows	distinct	and	separate	cluster	tree.

Linkage Cophenetic	Coefficient

0 single 0.739122

4 ward 0.741516

1 complete 0.859973

5 weighted 0.886175

3 centroid 0.893939

2 average 0.897708

#	create	and	print	a	dataframe	to	compare	cophenetic	correlations	for	different	linkage	methods
df_cc	=	pd.DataFrame(compare,	columns=compare_cols)
df_cc	=	df_cc.sort_values(by="Cophenetic	Coefficient")
df_cc

Let's	move	ahead	with	3	clusters,	Euclidean	distance,	and	average	linkage.

AgglomerativeClustering(linkage='average',	n_clusters=3)

Avg_Credit_Limit Total_Credit_Cards Total_visits_bank Total_visits_online Total_calls_made HC_segments

0 1.740187 -1.249225 -0.860451 -0.547490 -1.251537 0

1 0.410293 -0.787585 -1.473731 2.520519 1.891859 2

2 0.410293 1.058973 -0.860451 0.134290 0.145528 0

3 -0.121665 0.135694 -0.860451 -0.547490 0.145528 0

4 1.740187 0.597334 -1.473731 3.202298 -0.203739 1

Avg_Credit_Limit Total_Credit_Cards Total_visits_bank Total_visits_online Total_calls_made HC_segments

0 100000 2 1 1 0 0

1 50000 3 0 10 9 2

2 50000 7 1 3 4 0

3 30000 5 1 1 4 0

4 100000 6 0 12 3 1

Cluster	Profiling	and	Comparison

Cluster	Profiling:	K-means	Clustering

Avg_Credit_Limit Total_Credit_Cards Total_visits_bank Total_visits_online Total_calls_made count_in_each_segment

HCmodel	=	AgglomerativeClustering(n_clusters=3,	affinity="euclidean",	linkage="average")
HCmodel.fit(hc_df)

#	creating	a	copy	of	the	original	data
df2	=	df.copy()

#	adding	hierarchical	cluster	labels	to	the	original	and	scaled	dataframes
hc_df["HC_segments"]	=	HCmodel.labels_
df2["HC_segments"]	=	HCmodel.labels_

hc_df.head()

df2.head()

subset_scaled_df["HC_Clusters"]	=	HCmodel.labels_
df["HC_Clusters"]	=	HCmodel.labels_

km_cluster_profile	=	df1.groupby("K_means_segments").mean()

km_cluster_profile["count_in_each_segment"]	=	(
				df1.groupby("K_means_segments")["Avg_Credit_Limit"].count().values
)

km_cluster_profile

K_means_segments

0 33782.383420 5.515544 3.489637 0.981865 2.000000 386

1 12174.107143 2.410714 0.933036 3.553571 6.870536 224

2 141040.000000 8.740000 0.600000 10.900000 1.080000 50

Cluster	Profiling:	Hierarchical	Clustering

Avg_Credit_Limit Total_Credit_Cards Total_visits_bank Total_visits_online Total_calls_made count_in_each_segment

HC_segments

0 33713.178295 5.511628 3.485788 0.984496 2.005168 387

1 141040.000000 8.740000 0.600000 10.900000 1.080000 50

2 12197.309417 2.403587 0.928251 3.560538 6.883408 223

K-Means	Clustering	vs	Hierarchical	Clustering	Comparison

Avg_Credit_Limit Total_Credit_Cards Total_visits_bank Total_visits_online Total_calls_made count_in_each_segment

K_means_segments

0 33782.383420 5.515544 3.489637 0.981865 2.000000 386

1 12174.107143 2.410714 0.933036 3.553571 6.870536 224

2 141040.000000 8.740000 0.600000 10.900000 1.080000 50

Avg_Credit_Limit Total_Credit_Cards Total_visits_bank Total_visits_online Total_calls_made count_in_each_segment

HC_segments

0 33713.178295 5.511628 3.485788 0.984496 2.005168 387

1 141040.000000 8.740000 0.600000 10.900000 1.080000 50

2 12197.309417 2.403587 0.928251 3.560538 6.883408 223

<AxesSubplot:xlabel='K_means_segments'>

hc_cluster_profile	=	df2.groupby("HC_segments").mean()

hc_cluster_profile["count_in_each_segment"]	=	(
				df2.groupby("HC_segments")["Avg_Credit_Limit"].count().values
)

hc_cluster_profile

km_cluster_profile.style.highlight_max(color="lightgreen",	axis=0)

hc_cluster_profile.style.highlight_max(color="lightgreen",	axis=0)

k_means_df.groupby("K_means_segments").mean().plot.bar(figsize=(15,	6))

<AxesSubplot:xlabel='HC_segments'>

Looks	like	the	K-Means	and	Hierarchical	clusters	are	the	same	except	that	the	labels	are	swapped	between	clusters	1	and	2.

Let's	swap	the	labels	for	K-Means	for	better	analysis	and	comparison.

Avg_Credit_Limit Total_Credit_Cards Total_visits_bank Total_visits_online Total_calls_made count_in_each_segment

K_means_segments

0 33782.383420 5.515544 3.489637 0.981865 2.000000 386

1 141040.000000 8.740000 0.600000 10.900000 1.080000 50

2 12174.107143 2.410714 0.933036 3.553571 6.870536 224

<AxesSubplot:xlabel='K_means_segments'>

hc_df.groupby("HC_segments").mean().plot.bar(figsize=(15,	6))

k_means_df.loc[k_means_df["K_means_segments"]	==	1,	"K_means_segments"]	=	3
k_means_df.loc[k_means_df["K_means_segments"]	==	2,	"K_means_segments"]	=	1
k_means_df.loc[k_means_df["K_means_segments"]	==	3,	"K_means_segments"]	=	2
df1["K_means_segments"]	=	k_means_df["K_means_segments"]

km_cluster_profile	=	df1.groupby("K_means_segments").mean()
km_cluster_profile["count_in_each_segment"]	=	(
				df1.groupby("K_means_segments")["Avg_Credit_Limit"].count().values
)

km_cluster_profile.style.highlight_max(color="lightgreen",	axis=0)

k_means_df.groupby("K_means_segments").mean().plot.bar(figsize=(15,	6))

Observations

The	online	user	segment	matches	for	both	K-means	and	Hierarchical	Clustering	techniques.
There	is	a	clear	distinction	between	customers	who	prefer	online	banking	vs	others.
Online	users	have	more	credit	cards	and	a	larger	credit	limit,	which	is	beneficial	for	the	bank	with	respect	to	the	revenue	and	cutting	the
costs	of	manual	engagement	with	the	customers.

Let's	create	some	plots	on	the	original	data	to	understand	the	customer	distribution	among	the	clusters.

fig,	axes	=	plt.subplots(1,	5,	figsize=(16,	6))
fig.suptitle(
				"Boxplot	of	numerical	variables	for	each	cluster	obtained	using	K-means	Clustering",
				fontsize=20,
)

counter	=	0

for	ii	in	range(5):
				sns.boxplot(
								ax=axes[ii],	y=df1[df1.columns[counter]],	x=k_means_df["K_means_segments"]
)
				counter	=	counter	+	1

fig.tight_layout(pad=2.0)

fig,	axes	=	plt.subplots(1,	5,	figsize=(16,	6))
fig.suptitle(
				"Boxplot	of	numerical	variables	for	each	cluster	obtained	using	Hierarchical	Clustering",
				fontsize=20,
)

counter	=	0

Cluster	Comparison

Cluster	0:

Close	to	60%	of	the	customers	are	in	this	group.
This	cluster	has	the	second-highest	credit	limit	and	number	of	credit	cards.
Customers	in	this	group	prefer	to	visit	the	bank	for	their	banking	needs	than	doing	business	online	or	over	the	phone.	Total	visits	to	be
bank	are	ranging	between	1	and	5,	but	most	of	them	are	skewed	to	the	left.
There	is	almost	equal	distribution	of	phone	bankers	and	online	bankers	in	this	cluster.	Some	of	the	customers	have	never	visited	online,
while	the	highest	number	of	online	visits	is	3.	Some	customers	have	never	made	any	phone	banking
This	may	be	the	bank's	second-best	cluster	as	there	are	more	cards	and	credit	limits	than	cluster	1.

Cluster	1:

There	are	very	few	customers	in	this	segment	(only	around	7%).
This	cluster	seems	to	be	a	premium	cluster	with	the	highest	average	credit	limit	and	the	highest	number	of	credit	cards.
Average	credit	limit	for	this	group	is	between	85000	and	200000	dollars,	with	an	average	of	~141000	dollars.
Total	credit	cards	are	between	5	and	10	with	a	tail	on	the	left,	but	most	customers	are	within	the	8	to	10	range.
Customers	in	this	group	prefer	online	banking,	with	an	even	distribution	of	6	to	15	visits.
Customers	in	this	group	have	the	lowest	phone	calls	made	and	visits	to	the	bank,	with	some	customers	never	making	any	phone	calls
and	some	never	visiting	the	bank.

Cluster	2:

Around	1/3rd	of	the	customers	are	in	this	cluster.
This	cluster	has	the	lowest	number	of	credit	cards,	ranging	from	1	to	4.
This	cluster	has	the	lowest	average	credit	limit	and	most	of	them	are	below	2500	dollars	with	an	outlier	of	around	5000	dollars.
The	total	number	of	calls	made	by	this	segment	of	customers	is	the	highest	among	all	the	clusters	and	ranges	between	1	and	10.
Customers	in	this	segment	have	the	lowest	online	visits,	ranging	from	1	to	5	with	an	outlier	of	10	visits.

Insights
We	have	seen	that	3	clusters	are	distinctly	formed	using	both	methodologies	and	the	clusters	are	analogous	to	each	other.
Cluster	1	has	premium	customers	with	a	high	credit	limit	and	more	credit	cards,	indicating	that	they	have	more	purchasing	power.	The
customers	in	this	group	have	a	preference	for	online	banking.
Cluster	0	has	customers	who	prefer	to	visit	the	bank	for	their	banking	needs	than	doing	business	online	or	over	the	phone.	They	have	an
average	credit	limit	and	a	moderate	number	of	credit	cards.
Cluster	2	has	more	overhead	of	customers	calling	in,	and	the	bank	may	need	to	spend	money	on	call	centers.

Business	Recommendations
The	premium	customers	of	Cluster	1	have	the	potential	to	add	more	revenue	to	the	bank,	and	the	bank	should	run	incentives	to	draw
more	customers	of	this	kind.	The	bank	can	also	run	promotions	and	offer	discounts	for	paperless	billing	and	online	banking	to	drive	more

for	ii	in	range(5):
				sns.boxplot(ax=axes[ii],	y=df2[df2.columns[counter]],	x=hc_df["HC_segments"])
				counter	=	counter	+	1

fig.tight_layout(pad=2.0)

customers	into	this	group.
Cluster	0	has	customers	who	prefer	to	visit	the	bank	for	their	banking	needs	than	doing	business	online	or	over	the	phone.	They	have	an
average	credit	limit	and	number	of	credit	cards.	The	bank	can	increase	their	revenue	by	focusing	on	the	volume	of	customers	in	Cluster
0.
Since	the	Cluster	2	customers	prefer	to	use	phone	banking,	the	bank	can	invest	in	automating	the	phone	banking	so	that	the	overhead
can	be	reduced.	Phone	banking	can	also	be	expanded	to	chat	applications	like	WhatsApp	and	Telegram.
Bank	should	invest	in	making	online	banking	more	easier	and	secure.	It	should	also	run	a	campaign	on	the	security	and	convenience
feature	of	online	banking.

Add-on:	Cluster	Overlapping

/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:1182:	UserWarning:	No	cont
our	levels	were	found	within	the	data	range.
		cset	=	contour_func(
/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:1182:	UserWarning:	No	cont
our	levels	were	found	within	the	data	range.
		cset	=	contour_func(
/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:1182:	UserWarning:	No	cont
our	levels	were	found	within	the	data	range.
		cset	=	contour_func(

#	let's	see	if	there	is	any	overlap	in	the	clusters
g	=	sns.pairplot(
				k_means_df[
								[
												"Avg_Credit_Limit",
												"Total_Credit_Cards",
												"Total_visits_bank",
												"Total_visits_online",
												"Total_calls_made",
												"K_means_segments",
]
],
				diag_kind="kde",
				corner=True,
				hue="K_means_segments",
)
g.map_lower(sns.kdeplot,	levels=3,	color=".2")
plt.show()

Here	are	refined	insights	and	recommendations	based	on	the
clustering	analysis	of	AllLife	Bank's	customer	data:

Key	Insights:
Customer	Segmentation:

Cluster	0	(Moderate	Users):	Average	Credit	Limit:	$33,782	Total	Credit	Cards:	5.5	Total	Visits	to	Bank:	3.5	per	year	Total	Visits	Online:	1	per
year	Total	Calls	Made:	2	per	year	Proportion	of	Customers:	~59%

Cluster	1	(Premium	Users):	Average	Credit	Limit:	$141,040	Total	Credit	Cards:	8.7	Total	Visits	to	Bank:	0.6	per	year	Total	Visits	Online:	10.9
per	year	Total	Calls	Made:	1.1	per	year	Proportion	of	Customers:	~8%

Cluster	2	(Frequent	Callers):	Average	Credit	Limit:	$12,174	Total	Credit	Cards:	2.4	Total	Visits	to	Bank:	0.9	per	year	Total	Visits	Online:	3.6
per	year	Total	Calls	Made:	6.9	per	year	Proportion	of	Customers:	~34%

Behavioral	Patterns:

Cluster	0:	Customers	prefer	in-person	visits	to	the	bank	and	have	moderate	use	of	online	banking	and	phone	calls.	Cluster	1:	Premium
customers	with	high	online	banking	usage	and	minimal	in-person	visits	and	phone	calls.	Cluster	2:	Customers	who	rely	heavily	on	phone	calls
for	their	banking	needs	and	have	the	lowest	credit	limits	and	number	of	credit	cards.	Correlation	Insights:

Total	Credit	Cards	and	Average	Credit	Limit:	Strong	positive	correlation.	Higher	credit	limits	tend	to	be	associated	with	more	credit	cards.
Total	Calls	Made	and	Total	Credit	Cards:	Strong	negative	correlation.	Customers	who	make	more	calls	tend	to	have	fewer	credit	cards.
Recommendations:	Marketing	and	Upselling	Strategies:

Target	Cluster	1	for	Premium	Services:	Focus	marketing	efforts	on	upselling	premium	services	and	products	to	Cluster	1	customers.	These
customers	have	high	credit	limits	and	prefer	online	banking,	making	them	ideal	for	digital-first	products	and	services.	Promote	Online	Banking
to	Cluster	0:	Encourage	Cluster	0	customers	to	use	online	banking	more	frequently.	Offering	incentives	for	online	transactions	could	reduce
the	cost	of	in-person	banking.	Special	Campaigns	for	Cluster	2:	Implement	targeted	campaigns	to	convert	Cluster	2	customers	to	more
profitable	segments.	Highlight	the	benefits	of	online	banking	and	offer	support	to	reduce	their	reliance	on	phone	calls.	Service	Delivery
Improvements:

Enhance	Online	Banking	Experience:	Invest	in	making	the	online	banking	experience	seamless	and	secure.	Promote	its	convenience	and
security	features	to	increase	adoption	among	all	customer	segments.	Automate	Phone	Banking	for	Cluster	2:	Implement	advanced	IVR
systems	and	chatbot	solutions	to	handle	frequent	queries	from	Cluster	2	customers.	This	can	reduce	the	load	on	call	centers	and	improve
service	efficiency.	Customer	Retention	and	Satisfaction:

Personalized	Customer	Support	for	Cluster	1:	Provide	dedicated	customer	support	for	Cluster	1	to	maintain	their	satisfaction	and	loyalty.
Personalized	communication	and	exclusive	offers	can	enhance	their	experience.	Improve	In-Person	and	Phone	Support:	Ensure	that	the	in-
person	and	phone	banking	services	are	efficient	and	effective.	Regular	training	for	staff	and	investment	in	technology	can	improve	query
resolution	times	and	overall	customer	satisfaction.	Cross-Sell	and	Up-Sell	Opportunities:

Cross-Sell	to	Cluster	0:	Leverage	the	moderate	engagement	of	Cluster	0	customers	by	cross-selling	additional	financial	products	such	as
insurance,	loans,	and	investment	services.	Up-Sell	Credit	Cards	to	Cluster	2:	Encourage	Cluster	2	customers	to	upgrade	their	credit	cards
and	increase	their	credit	limits	through	tailored	offers	and	promotions.	Monitoring	and	Continuous	Improvement:

Regularly	Monitor	Clusters:	Continuously	monitor	the	behavior	of	customers	within	each	cluster	to	identify	any	shifts	or	emerging	trends.	Use
this	data	to	refine	marketing	and	service	strategies.	Feedback	Mechanisms:	Implement	feedback	mechanisms	to	gather	customer	insights
and	improve	services	based	on	their	preferences	and	needs.

	

Loading	[MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

