Employee Promotion Prediction

Description

Background & Context

Employee Promotion means the ascension of an employee to higher ranks, this aspect of the job is what drives employees the most. The ultimate reward for dedication and loyalty towards an organization and HR team plays an important role in handling all these promotion tasks based on ratings and other attributes available.

The HR team in JMD company stored data of promotion cycle last year, which consists of details of all the employees in the company working last year and also if they got promoted or not, but every time this process gets delayed due to so many details available for each employee - it gets difficult to compare and decide.

So this time HR team wants to utilize the stored data to make a model, that will predict if a person is eligible for promotion or not.

You as a data scientist at JMD company, need to come up with a model that will help the HR team to predict if a person is eligible for promotion or not.

Objective

Explore and visualize the dataset. Build a classification model to predict if the employee has a higher probability of getting a promotion Optimize the model using appropriate techniques Generate a set of insights and recommendations that will help the company

Data Dictionary:

- employee_id: Unique ID for the employee
- · department: Department of employee
- · region: Region of employment (unordered)
- education: Education Level
- gender: Gender of Employee
- recruitment channel: Channel of recruitment for employee
- no of trainings: no of other trainings completed in the previous year on soft skills, technical skills, etc.
- age: Age of Employee
- previous year rating: Employee Rating for the previous year
- length of service: Length of service in years
- awards_ won: if awards won during the previous year then 1 else 0
- avg training score: Average score in current training evaluations
- · is_promoted: (Target) Recommended for promotion

Importing Libraries

```
In [1]:
         # This will help in making the Python code more structured automatically (good coding practice)
         %load_ext nb black
         # Libraries to help with reading and manipulating data
         import pandas as pd
         import numpy as np
         # Libaries to help with data visualization
         import matplotlib.pyplot as plt
         import seaborn as sns
         # To tune model, get different metric scores, and split data
         from sklearn.metrics import (
             fl score.
             accuracy_score,
             recall score,
             precision score,
             confusion_matrix,
             roc auc score,
             plot confusion matrix,
         from sklearn.model selection import train test split, StratifiedKFold, cross val score
         # To be used for data scaling and one hot encoding
         from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
```

```
# To impute missing values
from sklearn.impute import SimpleImputer
# To oversample and undersample data
from imblearn.over_sampling import SMOTE
from imblearn.under_sampling import RandomUnderSampler
# To do hyperparameter tuning
from sklearn.model_selection import RandomizedSearchCV
# To be used for creating pipelines and personalizing them
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
# To define maximum number of columns to be displayed in a dataframe
pd.set_option("display.max_columns", None)
# To supress scientific notations for a dataframe
pd.set_option("display.float_format", lambda x: "%.3f" % x)
# To help with model building
from sklearn.linear model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import (
    AdaBoostClassifier,
    GradientBoostingClassifier,
    RandomForestClassifier,
    BaggingClassifier,
from xgboost import XGBClassifier
# To suppress scientific notations
pd.set\_option("display.float\_format", \ \textbf{lambda} \ x: \ "\%.3f" \ \% \ x)
# To supress warnings
import warnings
warnings.filterwarnings("ignore")
```

Loading Data

```
In [2]: prediction = pd.read_csv("employee_promotion.csv")
In [3]: # Checking the number of rows and columns in the data
prediction.shape
Out[3]: (54808, 13)
```

The dataset has 54808 rows and 13 columns

Data Overview

```
In [4]:
    # let's create a copy of the data
    data = prediction.copy()
```

```
In [5]: # let's view the first 5 rows of the data
data.head()
```

Out[5]:		employee_id	department	region	education	gender	recruitment_channel	no_of_trainings	age	previous_year_rating	length_of_service	a
	0	65438	Sales & Marketing	region_7	Master's & above	f	sourcing	1	35	5.000	8	
	1	65141	Operations	region_22	Bachelor's	m	other	1	30	5.000	4	
	2	7513	Sales & Marketing	region_19	Bachelor's	m	sourcing	1	34	3.000	7	
	3	2542	Sales & Marketing	region_23	Bachelor's	m	other	2	39	1.000	10	
	4	48945	Technology	region_26	Bachelor's	m	other	1	45	3.000	2	

In [6]: # let's view the last 5 rows of the data data.tail()

region education gender recruitment_channel no_of_trainings age previous_year_rating length_of_servic Out[6]: employee_id department 54803 3030 Technology region_14 Bachelor's 48 3.000 m sourcing 1 Master's & 54804 74592 Operations region_27 37 2.000 other 54805 13918 Analytics region_1 Bachelor's other 1 27 5.000 Sales & sourcing 54806 13614 region_9 1.000 Marketing 54807 51526 HR region_22 Bachelor's 1 000 m other 1 27

In [7]: # let's check the data types of the columns in the dataset data.info()

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 54808 entries, 0 to 54807 Data columns (total 13 columns):

Column Non-Null Count Dtype ----employee id 54808 non-null int64 0 1 department 54808 non-null object region 54808 non-null object 2 3 education 52399 non-null object 54808 non-null object 4 aender recruitment channel 54808 non-null object 54808 non-null int64 6 no_of_trainings 7 54808 non-null int64 age previous_year_rating 50684 non-null float64 8 length of service 54808 non-null int64 54808 non-null int64 10 awards_won 11 avg_training_score 52248 non-null float64 12 is_promoted 54808 non-null int64 dtypes: float64(2), int64(6), object(5)

memory usage: 5.4+ MB

• 5 columns are of object type rest all are numerical.

In [8]: # let's check for duplicate values in the data data.duplicated().sum()

Out[81: 0

In [9]: # let's check for missing values in the data
round(data.isnull().sum() / data.isnull().count() * 100, 2)

Out[9]: employee_id 0.000 0.000 department region 0.000 4.400 education 0.000 gender recruitment channel 0.000 0.000 no of trainings 0.000 age 7.520 previous year rating length_of_service 0.000 awards won 0.000 4.670 avg_training_score is promoted 0.000 dtype: float64

- Education_Level has 4.4% missing values
- previous year rating has 7.52% missing values
- average_training_score has 4.67% missing values

```
In [10]:
```

let's view the statistical summary of the numerical columns in the data data.describe().T

Out[10]:

	count	mean	std	min	25%	50%	75%	max
employee_id	54808.000	39195.831	22586.581	1.000	19669.750	39225.500	58730.500	78298.000
no_of_trainings	54808.000	1.253	0.609	1.000	1.000	1.000	1.000	10.000
age	54808.000	34.804	7.660	20.000	29.000	33.000	39.000	60.000
previous_year_rating	50684.000	3.329	1.260	1.000	3.000	3.000	4.000	5.000
length_of_service	54808.000	5.866	4.265	1.000	3.000	5.000	7.000	37.000
awards_won	54808.000	0.023	0.150	0.000	0.000	0.000	0.000	1.000
avg_training_score	52248.000	63.712	13.522	39.000	51.000	60.000	77.000	99.000
is_promoted	54808.000	0.085	0.279	0.000	0.000	0.000	0.000	1.000

Observations:

- employee_id: It is a unique identifier tht can be dropped for analysis
- no_of_rtrainings: Average trainings is 1.25, years, min is 1 and max is 10
- age: Average employee age is 34 years, min is 20 and max is 60
- previous year rating: The rating last year in average is 3.3 with a minimum of 1 and a maximum of 5
- length_of_service: On average the length of service is 5.8 years with a minimum of 1 year and a maximum of 37
- awards won: On average JMD awards .02 awards with a minimum of 0 and a maximum of 1
- avg_training_score: THe average training score is 63 with a minimum score of 39 to 99
- is_promoted: This is our dependent variable

In [11]:

data.describe(include=["object"]).T

Out[11]:

	count	unique	top	freq
department	54808	9	Sales & Marketing	16840
region	54808	34	region_2	12343
education	52399	3	Bachelor's	36669
gender	54808	2	m	38496
recruitment_channel	54808	3	other	30446

```
In [12]:
```

```
for i in data.describe(include=["object"]).columns:
     print("Unique values in", i, "are :")
print(data[i].value_counts())
     print("*" * 50)
Unique values in department are :
                         16840
```

Sales & Marketing Operations 11348 Procurement 7138 Technology 7138 Analytics 5352 Finance 2536 HR 2418 Legal 1039 R&D 999 Name: department, dtype: int64

Unique values in region are :

```
region_2
           12343
region 22
             6428
             4843
region_7
region_15
             2808
region_13
             2648
region 26
             2260
region_31
             1935
region 4
              1703
```

```
region 27
              1659
region 16
              1465
region 28
              1318
region 11
              1315
region 23
              1175
region_29
              994
              945
region 32
              874
region 19
region 20
              850
              827
region_14
               819
region_25
region_17
               796
region 5
              766
               690
region 6
               657
region 30
region_8
              655
region 10
               648
region 1
               610
region 24
               508
               500
region_12
region 9
              420
              411
region_21
               346
region_3
              292
region_34
region 33
             269
region_18
               31
Name: region, dtype: int64
Unique values in education are :
Bachelor's
            36669
Master's & above
                   14925
Below Secondary
                   805
Name: education, dtype: int64
Unique values in gender are :
    38496
    16312
Name: gender, dtype: int64
Unique values in recruitment\_channel are :
other
         30446
          23220
sourcina
            1142
Name: recruitment channel, dtype: int64
```

Observations

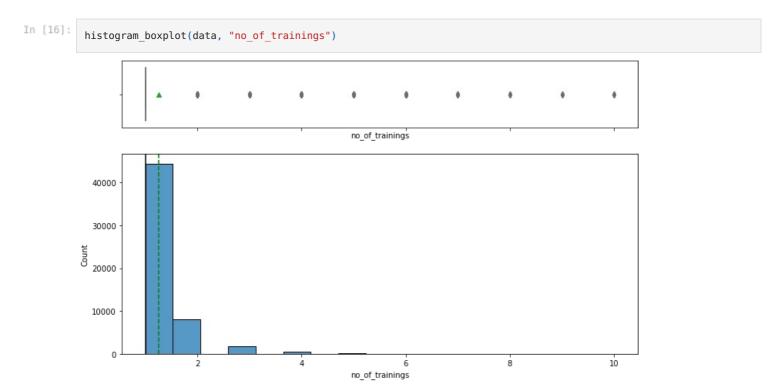
- There are 9 distinct departments at JMD.
- Most of the employees are male at an approximate ration 2.5 to 1
- Most employees were recruited from other channels.
- · Most employees have a bachelors degree.
- There are 34 different regions where employees work
- There are some missing values in previous_year_rating, education and average_training_score. Some of the missing values might be due to new hires

Data Pre-processing

EDA

```
In [15]:
          # function to plot a boxplot and a histogram along the same scale.
          def histogram_boxplot(data, feature, figsize=(12, 7), kde=False, bins=None):
              Boxplot and histogram combined
              data: dataframe
               feature: dataframe column
               figsize: size of figure (default (12,7))
              kde: whether to the show density curve (default False)
              bins: number of bins for histogram (default None)
              f2, (ax_box2, ax_hist2) = plt.subplots(
    nrows=2, # Number of rows of the subplot grid= 2
                  sharex=True, # x-axis will be shared among all subplots
                   gridspec_kw={"height_ratios": (0.25, 0.75)},
                   figsize=figsize,
               ) # creating the 2 subplots
              sns.boxplot(
                  data=data, x=feature, ax=ax_box2, showmeans=True, color="violet"
                 # boxplot will be created and a star will indicate the mean value of the column
              sns.histplot(
                   data=data, x=feature, kde=kde, ax=ax_hist2, bins=bins, palette="winter"
               ) if bins else sns.histplot(
                  data=data, x=feature, kde=kde, ax=ax_hist2
                 # For histogram
              ax_hist2.axvline(
                  data[feature].mean(), color="green", linestyle="--"
               ) # Add mean to the histogram
              ax_hist2.axvline(
                  data[feature].median(), color="black", linestyle="-"
                 # Add median to the histogram
```

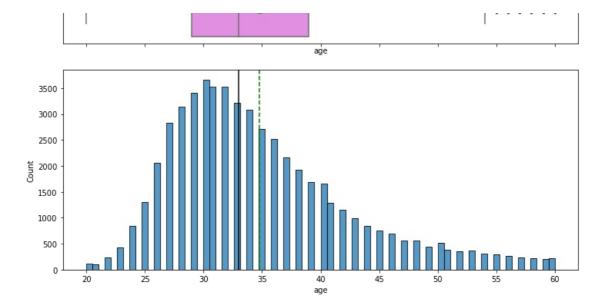
Observations on no of trainings



- The distribution of number of trainings is skewed to the right with most employees having less than 2 trainings
- From the boxplot, we can see that there are a several outliers.

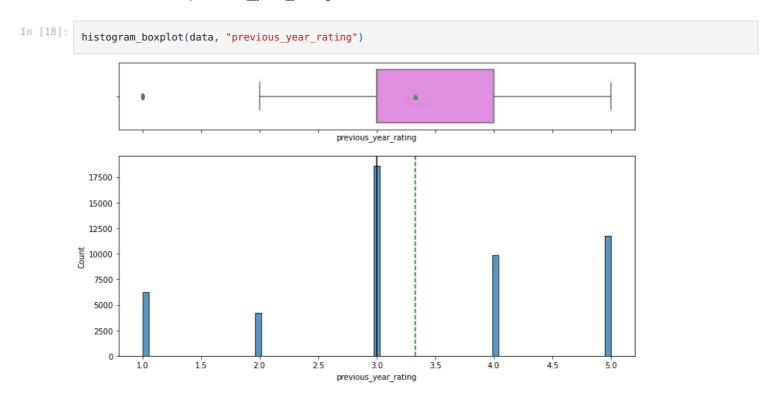
Observations on age

```
In [17]: histogram_boxplot(data, "age")
```



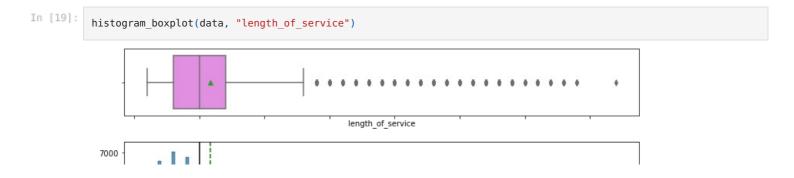
- The distribution of age is slightly skewed to the right with an average of 35 years old
- From the boxplot, we can see that there are outliers to the older side of age

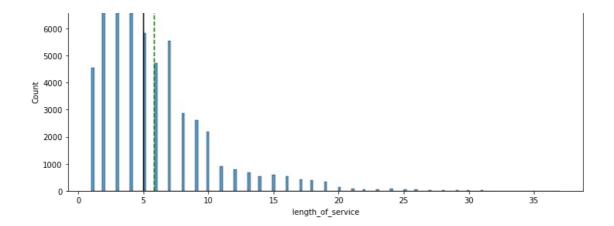
Observations on previous_year_rating



• This is a 5 odd distributed curve, most values are centered. However we can see that there is at least 10% of the population that is under-performing (score = 1) and about 20% is over-performing (score=5)

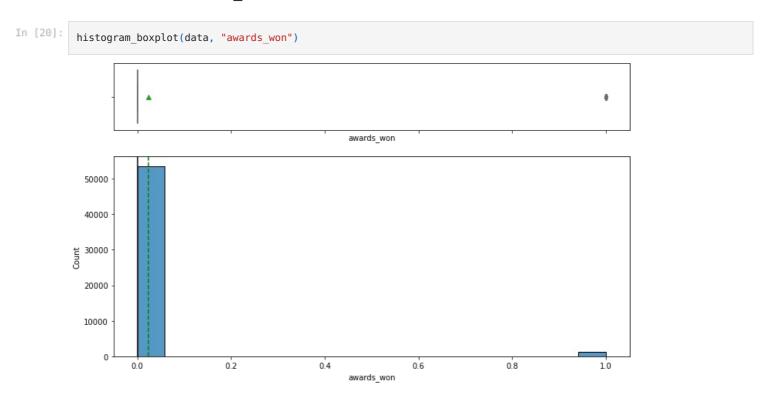
Observations on length_of_service





- The distribution of service is skewed to the right with several outlies passed 12 years of service
- Most of the employees have less than 7 years of service

Observations on awards_won



• Less than 1-2% have won an award

Observations on avg_training_score


```
2000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 10
```

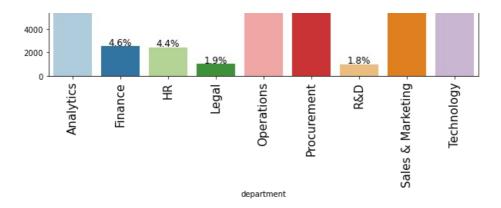
The data is concentrated betwee 45 and 85 score

```
In [22]:
          # function to create labeled barplots
          def labeled_barplot(data, feature, perc=True, n=None):
              Barplot with percentage at the top
              data: dataframe
              feature: dataframe column
              perc: whether to display percentages instead of count (default is False)
              n: displays the top n category levels (default is None, i.e., display all levels) """
              total = len(data[feature]) # length of the column
              count = data[feature].nunique()
              if n is None:
                  plt.figure(figsize=(count + 1, 5))
              else:
                  plt.figure(figsize=(n + 1, 5))
              plt.xticks(rotation=90, fontsize=15)
              ax = sns.countplot(
                  data=data,
                  x=feature.
                  palette="Paired",
                  order=data[feature].value_counts().index[:n].sort_values(),
              for p in ax.patches:
                  if perc == True:
                      label = "{:.1f}%".format(
                          100 * p.get_height() / total
                        # percentage of each class of the category
                  else:
                      label = p.get_height() # count of each level of the category
                  x = p.get_x() + p.get_width() / 2 # width of the plot
                  y = p.get_height() # height of the plot
                  ax.annotate(
                      label,
                      (x, y),
                      ha="center",
                      va="center",
                      size=12,
                      xytext=(0, 5),
                      textcoords="offset points",
                  ) # annotate the percentage
              plt.show() # show the plot
```

Observations on Department

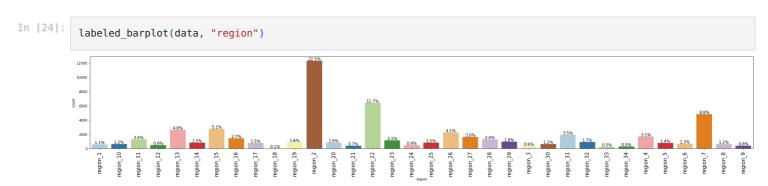
```
In [23]: labeled_barplot(data, "department")

16000 - 14000 - 12000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 -
```



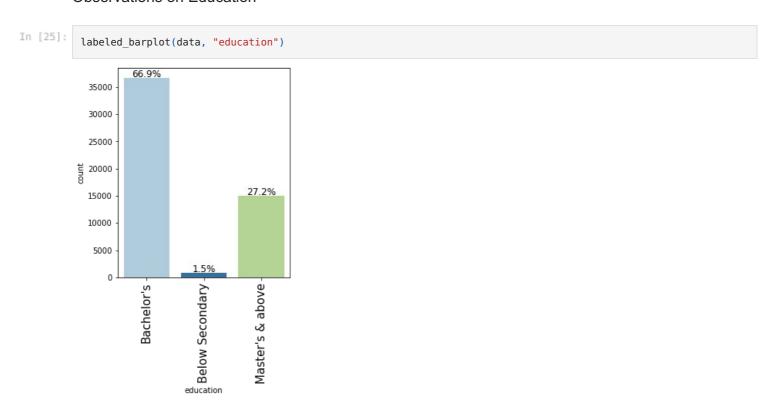
• The majority of employees belong to Sales & Marketing, Operations, Procurement and Technology.

Observations on region



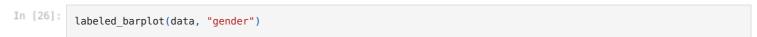
• Region 2, 7 and 22 are highly populated

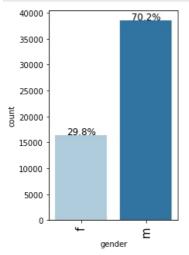
Observations on Education



Most employees have a bachelors degree with 66%

Observations on Gender

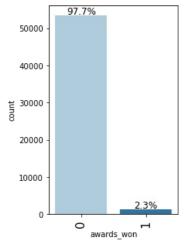




• There are 70% male employees in JMD

Observations on Awards won

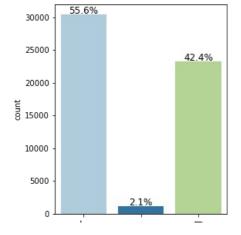
In [27]: labeled_barplot(data, "awards_won")



• The vast majority of employees have not won an award

Observations on Recruitment channel

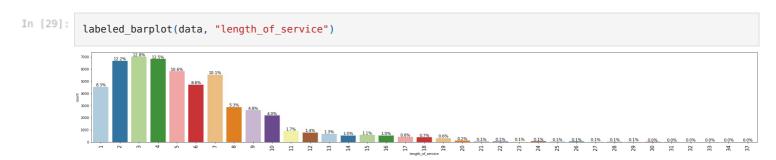
In [28]: labeled_barplot(data, "recruitment_channel")



recruitment_channel

- 55% of employees were recruited through "other" channels and 42% through sourcing

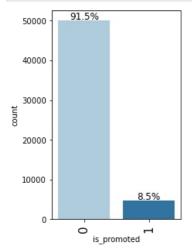
Observations on Length of service



• As mentioned high percent of the population has less than 7 years of service

In [30]: ### Observations on promotion

In [31]: labeled_barplot(data, "is_promoted")



- Only 8% of the employees have received a promotion
- This indicates an imbalance in the data.

Bivariate Analysis

age

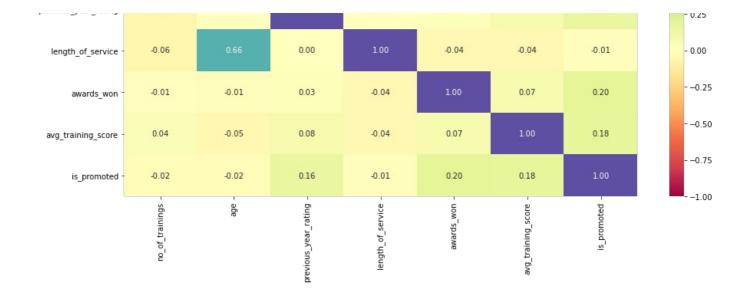
previous year rating

```
In [32]:
            plt.figure(figsize=(15, 7))
            sns.heatmap(data.corr(), annot=True, vmin=-1, vmax=1, fmt=".2f", cmap="Spectral")
            plt.show()
                                                                                                                                            1.00
                                                               -0.06
                                                                             -0.06
                                                                                                          0.04
                                                                                                                         -0.02
                                                -0.08
                                                                                            -0.01
               no_of_trainings
                                                                                                                                            0.75
                                                               0.01
                                                                                            -0.01
                                                                                                          -0.05
                                                                                                                         -0.02
```

0.03

0.50

0.16



- Length of service and age show a bit of correlation.
- All other features seem to be independent

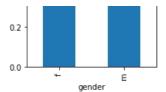
```
In [33]:
          # function to plot stacked bar chart
          def stacked_barplot(data, predictor, target):
              Print the category counts and plot a stacked bar chart
              data: dataframe
              predictor: independent variable
              target: target variable
              count = data[predictor].nunique()
              sorter = data[target].value_counts().index[-1]
              tab1 = pd.crosstab(data[predictor], data[target], margins=True).sort_values(
                  by=sorter, ascending=False
              print(tab1)
print("-" * 120)
              tab = pd.crosstab(data[predictor], data[target], normalize="index").sort_values(
                  by=sorter, ascending=False
              tab.plot(kind="bar", stacked=True, figsize=(count + 1, 5))
              plt.legend(
                  loc="lower left", frameon=False,
              plt.legend(loc="upper left", bbox_to_anchor=(1, 1))
              plt.show()
```

Promoted vs Gender

0.6

0.4

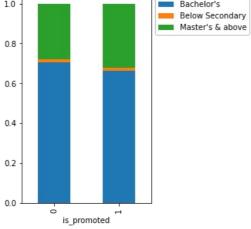
```
In [34]:
          stacked_barplot(data, "gender", "is_promoted")
         is promoted
                          0
                                1
                                     All
         gender
         All
                      50140 4668 54808
         m
                      35295
                             3201
                                   38496
         f
                      14845 1467 16312
         1.0
         0.8
```



• There's no difference when female/male(s) are being promoted

Promoted vs Education

In [35]: stacked_barplot(data, "is_promoted", "education") education Bachelor's Below Secondary Master's & above All $is_promoted$ All 36669 14925 52399 0 33661 738 13454 47853 1 3008 67 1471 4546 1.0 Bachelor's Below Secondary Master's & above 0.8



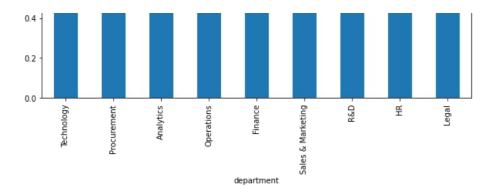
• Employees with a masters degree or above seem to have a higher edge when it comes to promotion.

Promoted vs Department

0.8

0.6

```
In [36]:
          stacked_barplot(data, "department", "is_promoted")
          \verb"is_promoted"
                                  0
                                        1
                                             All
         department
                                     4668
         All
                             50140
                                           54808
          Sales & Marketing 15627
                                     1213
                                           16840
                              10325
                                     1023
                                           11348
         Operations
         Technology
                              6370
                                      768
                                            7138
         Procurement
                              6450
                                      688
                                            7138
         Analytics
                               4840
                                      512
                                            5352
                              2330
         Finance
                                      206
                                            2536
         HR
                               2282
                                      136
                                            2418
         R&D
                                930
                                       69
                                             999
         Legal
                                986
                                       53
                                            1039
          1.0
```



• Technology, Procurement, Analytics and Operations employees seem to be promoted more than employees in other departments

Promoted vs awards won

1.0 - 0.8 - 0.6 - 0.4 - 0.2 - 0.0 awards_won

• It is evient that if you have won an award at JMD there is a high likelihood of promotion

Promoted vs Length of service

```
50140
                            4668
                                   54808
All
                      6424
4
                      6238
                              598
                                    6836
                      6089
                              595
                                    6684
5
                              475
                      5357
                                    5832
                      5087
                              464
                                    5551
6
                      4333
                              401
                                    4734
                      4170
                              377
                                    4547
                      2614
8
                              269
                                    2883
                      2400
                              229
                                    2629
10
                      1989
                              204
                                    2193
11
                       820
                              96
                                     916
12
                       731
                              63
                                     794
                       633
```

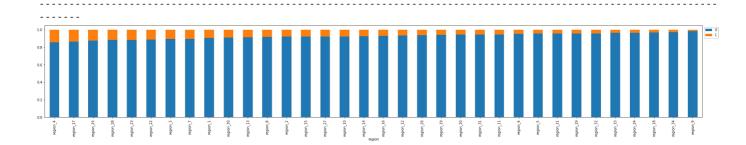
```
15
                     550
                            43
                                  593
                     507
                                  548
16
                            41
19
                     297
                                  329
                            32
14
                     520
                            29
                                  549
17
                     406
                            26
                                  432
18
                     367
                            25
                                  392
20
                                  128
                     118
                            10
                            7
23
                      58
                                   65
                      55
                            6
22
                                   61
                      74
                             4
                                   78
21
29
                      27
                             3
                                   30
25
                      49
                             2
                                   51
                      28
                            2
28
                                   30
                       8
                            2
                                   10
32
34
                       3
                             1
                                    4
                      35
                                   36
27
                             1
                      70
                             0
                                   70
                      41
                             0
26
                                   41
30
                      12
                             0
                                   12
                      20
                             0
                                   20
31
                       9
                             0
33
37
                       1
                             0
                                    1
```

• The higher the years of service the more likely that the employee will be promoted

Promoted vs Region

```
In [39]: stacked barplot(data, "region", "is promoted")
```

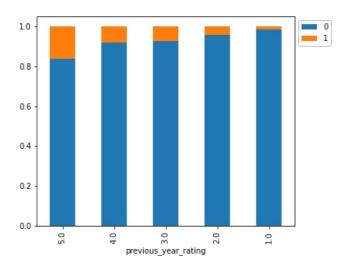
```
is_promoted 0
                          All
                      1
region
            50140 4668
                         54808
All
region 2
          11354 989
                         12343
region_22 5694
                    734
                          6428
region_7
             4327
                    516
                          4843
region_4
             1457
                    246
                          1703
region 13
             2418
                    230
                          2648
             2586
                          2808
{\sf region\_15}
                    222
region_28
             1164
                    154
                          1318
             2117
region 26
                    143
                          2260
region 23
             1038
                    137
                          1175
             1528
                    131
region_27
                          1659
region_31
             1825
                    110
                          1935
             687
region_17
                          796
                    109
region 25
             716
                    103
                          819
             1363
                    102
                          1465
region_16
region_11
             1241
                    74
                          1315
region_14
             765
                     62
                           827
region 30
              598
                     59
                           657
              552
                     58
                           610
region_1
region_19
              821
                     53
                           874
              602
region_8
                     53
                           655
region_10
              597
                     51
                           648
{\sf region\_20}
              801
                     49
                           850
region 29
              951
                     43
                           994
region 32
              905
                     40
                           945
region 3
              309
                     37
                           346
region_5
              731
                     35
                           766
region 12
              467
                     33
                           500
region 6
              658
                     32
                           690
              490
region_24
                     18
                           508
              393
                     18
                           411
region_21
region_33
              259
                     10
                           269
              284
                     8
                           292
region_34
                    8
region_9
              412
                           420
region_18
               30
                            31
```



There are several regions where promotion is higher

Promoted vs Previous year rating

```
In [40]:
          stacked_barplot(data, "previous_year_rating", "is_promoted")
         is_promoted
                                   0
                                         1
                                            All
         previous_year_rating
                               46355 4329
         All
                                            50684
         5.0
                                9820
                                      1921
                                            11741
         3.0
                               17263
                                      1355
                                            18618
                                9093
                                       784
         4.0
                                             9877
         2.0
                                4044
                                       181
                                             4225
                                6135
                                       88
         1.0
                                             6223
```



• As expected the higher the rating from last year the better opportunites for promotion

```
def distribution_plot_wrt_target(data, predictor, target):
    fig, axs = plt.subplots(2, 2, figsize=(12, 10))
    target_uniq = data[target].unique()
    axs[0, 0].set_title("Distribution of target for target=" + str(target_uniq[0]))
    sns.histplot(
        data=data[data[target] == target_uniq[0]],
        x=predictor,
        kde=True,
        ax=axs[0, 0],
        color="teal",
)

axs[0, 1].set_title("Distribution of target for target=" + str(target_uniq[1]))
    sns.histplot(
        data=data[data[target] == target_uniq[1]],
```

```
x=predictor,
    kde=True,
    ax=axs[0, 1],
    color="orange",
axs[1, 0].set title("Boxplot w.r.t target")
sns.boxplot(data=data, x=target, y=predictor, ax=axs[1, 0], palette="gist_rainbow")
axs[1, 1].set_title("Boxplot (without outliers) w.r.t target")
sns.boxplot(
    data=data,
    x=target,
    y=predictor,
    ax=axs[1, 1],
    showfliers=False,
    palette="gist_rainbow",
plt.tight_layout()
plt.show()
```

Promoted vs Age

In [42]: distribution_plot_wrt_target(data, "age", "is_promoted") Distribution of target for target=0 Distribution of target for target=1 3500 300 3000 250 2500 200 2000 150 1500 100 1000 500 50 age age Boxplot (without outliers) w.r.t target Boxplot w.r.t target 55 60 55 50 50 45 45 40 B 40 35 35 30 30 25 25

There's a slight difference in age for employees not promoted vs promoted.

is_promoted

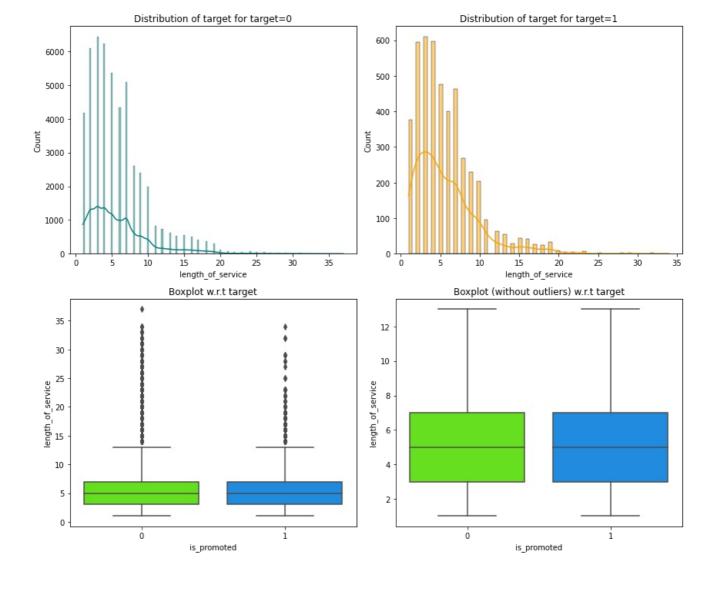
Promoted vs Length of service

Ó

20

20

is_promoted



• Tenure has little impact on promotion.

```
In [44]:
            cols = data[["length_of_service", "previous_year_rating",]].columns.tolist()
            plt.figure(figsize=(12, 10))
            for i, variable in enumerate(cols):
                plt.subplot(3, 3, i + 1)
                sns.lineplot(data["age"], data[variable], hue=data["gender"], ci=0)
                plt.tight_layout()
                plt.title(variable)
            plt.show()
                          length_of_service
                                                                    previous_year_rating
             16
                  gender
                                                             gender
                                                        3.5
             14
                                                   previous_year_rating
             12
           length of service
             10
              8
              6
              4
                                                        3.0
                                                                                             60
                 20
                         30
                                 40
                                          50
                                                  60
                                                                    30
                                                                             40
                                                                                     50
                                                                            age
```

- It seems that age and gender follow very closely when it comes to years of service.
- From age 30-50 females seem to do better during previous year rating

```
In [45]: Q1 = data.quantile(0.25)  # To find the 25th percentile and 75th percentile.
Q3 = data.quantile(0.75)

IQR = Q3 - Q1  # Inter Quantile Range (75th perentile - 25th percentile)

lower = (
    Q1 - 1.5 * IQR
)  # Finding lower and upper bounds for all values. All values outside these bounds are outliers upper = Q3 + 1.5 * IQR
```

```
In [46]:
              (data.select_dtypes(include=["float64", "int64"]) < lower)</pre>
              | (data.select_dtypes(include=["float64", "int64"]) > upper)
          ).sum() / len(data) * 100
Out[46]: no of trainings
                                 19.030
                                  2.618
         age
         previous year rating
                                11.354
                                 6.366
         length_of_service
         awards_won
                                  2.317
                                  0.000
         avg_training_score
         is_promoted
                                  8.517
         dtype: float64
```

• There are some high percentage of outliers when it comes to no_of_trainings and previous_year_rating. The outliers are typical and will not be treated for this example

```
Missing value imputation

    We will impute missing values in all 3 columns (education, previous_year_rating and avg_training_score using mode)

In [47]:
          data1 = data.copy()
In [48]:
          data1.isna().sum()
Out[48]: department
                                      0
                                      0
          region
                                   2409
         education
         gender
                                      0
          recruitment_channel
                                      0
         no_of_trainings
                                      0
         age
                                      0
         previous year rating
                                   4124
          length_of_service
                                      0
                                      0
         awards won
         avg_training_score
                                   2560
         is promoted
                                      0
         dtype: int64
In [49]:
          imputer = SimpleImputer(strategy="most_frequent")
In [50]:
          X = data1.drop(["is_promoted"], axis=1)
          y = data1["is_promoted"]
In [51]:
          # Splitting data into training, validation and test set:
          # first we split data into 2 parts, say temporary and test
```

```
X_train, X_val, y_train, y_val = train_test_split(
             X temp, y temp, test size=0.25, random state=1, stratify=y temp
         print(X_train.shape, X_val.shape, X_test.shape)
         (32884, 11) (10962, 11) (10962, 11)
In [52]:
          reqd col for_impute = ["education", "previous_year_rating", "avg_training_score"]
In [53]:
         # Fit and transform the train data
         X train[reqd col for impute] = imputer.fit transform(X train[reqd col for impute])
         # Transform the validation data
         X val[reqd col for impute] = imputer.transform(X val[reqd col for impute])
         # Transform the test data
         X test[reqd col for impute] = imputer.transform(X test[reqd col for impute])
In [54]:
         # Checking that no column has missing values in train or test sets
         print(X_train.isna().sum())
         print("-" * 30)
         print(X val.isna().sum())
         print("-" * 30)
         print(X_test.isna().sum())
         department
                                0
         region
                                0
         education
                                0
         gender
         recruitment channel
                                0
                                0
         no_of_trainings
                                0
         age
         previous_year_rating
                                0
         length of service
                                0
         awards won
                                0
         avg training score
         dtype: int64
         department
                              0
         region
                                0
         education
         gender
                                0
         recruitment channel
                                0
         no_of_trainings
                                0
                                0
         age
         previous_year_rating
                                0
         length_of_service
                                0
         awards won
                                0
         avg_training_score
                                0
         dtype: int64
         -----
         department
                             0
         region
                                0
         education
                                0
         gender
                                0
         recruitment_channel
                                0
                                0
         no_of_trainings
                                0
                                0
         previous year rating
         length_of_service
                                0
         awards won
                                0
         avg_training_score
                                0
         dtype: int64
```

then we split the temporary set into train and validation

All missing values have been treated.

```
In [55]:
    cols = X_train.select_dtypes(include=["object", "category"])
    for i in cols.columns:
```

```
6746
        Operations
        Technology
                           4383
                           4330
3173
        Procurement
        Analytics
        Finance
                           1570
        HR
                           1482
        R&D
                            613
        Legal
                            598
        Name: department, dtype: int64
         ********
        region_2 7351
        region 15 1706
        region_13 1584
region_26 1344
        region 31 1132
         region_4
                    987
        region 27
                     983
         region_16
                     893
         region 11
                     799
                     780
         region_28
         region_23
                     688
                     601
         region_29
        region_32
                     577
         region_19
                     533
         region_20
                     525
         region 14
                     510
         region 17
                     498
         region 25
                     480
        region_5
                     442
         region 8
                     411
         region 6
                     408
        region_10
                     407
        region_30
                     396
         region_1
                     368
         region 12
                     312
         region_24
                     306
        region_9
region_21
                     242
                     230
         region 3
                     212
         region 34
                     167
         region 33
                     155
        region 18
                     17
        Name: region, dtype: int64
         **********
        Bachelor's 23562
        Master's & above 8840
Below Secondary 482
        Name: education, dtype: int64
        **********
           22989
            9895
        Name: gender, dtype: int64
         **********
        other
                   18260
                  13942
        sourcing
                   682
        referred
        Name: recruitment channel, dtype: int64
In [56]:
         cols = X val.select dtypes(include=["object", "category"])
         for i in cols.columns:
            print(X_val[i].value_counts())
print("*" * 30)
         Sales & Marketing
                            3454
        Operations
                            2315
        Procurement
                           1392
        Technology
                            1364
        Analytics
                            1072
        Finance
                            485
        HR
                            456
        Legal
                             227
        R&D
                             197
        Name: department, dtype: int64
```

print(X_train[i].value_counts())

9989

print("*" * 30)

Sales & Marketing

```
region 7
        region 15
                     557
        region_13
                     533
                     466
        region_26
        region 31
                     431
        region_27
                     358
        region_4
                     351
        region_16
                     288
        region_11
                     262
        region 28
                     252
        region_23
                     248
        region 32
                     201
        region 29
                     201
        region 19
                     176
        region 20
                     171
        region_14
                     167
        region_25
                     156
        region 5
                     154
        region_17
                     149
        region 6
                     138
        region_1
                     133
        region 30
                     132
        region_8
                     126
        region 10
                     119
        region_24
                     106
        region 21
                     93
                      86
        region_12
        region 9
                      83
        region 3
                      62
        region 33
                      60
        region_34
                      44
        region 18
                      4
        Name: region, dtype: int64
        **********
                     7744
        Bachelor's
        Master's & above
                          3053
        Below Secondary
                          165
        Name: education, dtype: int64
             7809
            3153
        f
        Name: gender, dtype: int64
        **********
        other
                 6073
        sourcing
                  4666
        referred
                  223
        Name: recruitment_channel, dtype: int64
        **********
In [57]:
         cols = X test.select dtypes(include=["object", "category"])
         for i in cols.columns:
             print(X_train[i].value_counts())
             print("*" * 30)
        Sales & Marketing
                            9989
        Operations
                            6746
        Technology
                           4383
        Procurement
                           4330
        Analytics
                            3173
        Finance
                            1570
                           1482
        HR
        R&D
                            613
        Legal
                            598
        Name: department, dtype: int64
        **********
                  7351
        region_2
                    3867
        region_22
        region_7
                    2973
        region 15
                  1706
        region_13
                    1584
        region_26
                    1344
        region_31
                    1132
        region_4
                     987
        region_27
                     983
                     893
        region_16
        region_11
                     799
        region_28
                     780
```

915

2478

region_2

region_22 1262

```
region 23
              688
region_29
              601
              577
region 32
region_19
              533
region 20
              525
region_14
              510
              498
region_17
region 25
              480
region_5
              442
region_8
              411
              408
region_6
region_10
              407
region_30
              396
              368
region_1
              312
region 12
region 24
              306
region 9
              242
region 21
              230
region 3
              212
region_34
              167
region 33
              155
region_18
               17
Name: region, dtype: int64
Bachelor's
                      8840
Master's & above
Below Secondary
                      482
Name: education, dtype: int64
m
     22989
      9895
Name: gender, dtype: int64
            18260
other
sourcing
            13942
              682
referred
Name: recruitment channel, dtype: int64
```

Encoding categorical variables

```
In [58]:
    X_train = pd.get_dummies(X_train, drop_first=True)
    X_val = pd.get_dummies(X_val, drop_first=True)
    X_test = pd.get_dummies(X_test, drop_first=True)
    print(X_train.shape, X_val.shape, X_test.shape)

(32884, 52) (10962, 52) (10962, 52)
```

• After encoding there are 52 columns.

```
In [59]:
            X train.head()
Out[59]:
                  no_of_trainings
                                  age previous_year_rating length_of_service awards_won avg_training_score department_Finance department_HR dep
           24986
                                                      3.000
                                                                                                       85.000
                                                                                                                                0
                                                                                                                                                0
           42259
                                                      3.000
                                                                           10
                                                                                                       65.000
                                                                                                                                                0
           51748
                               2
                                   28
                                                      4.000
                                                                           3
                                                                                        0
                                                                                                       50.000
                                                                                                                                0
                                                                                                                                                0
           48031
                                                                           9
                                                                                        0
                                                                                                       51.000
                                                                                                                                0
                                   38
                                                      1.000
                                                                                                                                                0
           36827
                                                      5.000
```

Building the model

Model evaluation criterion

Model can make wrong predictions as:

- 1. Predicting an employee will be promoted and the employee is not promoted
- 2. Predicting an employee will not be promoted and the employee is promoted

Which case is more important?

• In my opinion both are valuable pieces of information but it would be interesting to understand the Recall of the problem when the employee is not expected to be promoted but it is promoted

How to reduce this loss i.e need to reduce False Negatives?

• Use Recall to be maximized, greater the Recall higher the chances of minimizing false negatives. Hence, the focus should be on increasing Recall or minimizing the false negatives or in other words identifying the true positives (i.e. Class 1).

Functions to calculate different metrics and confusion matrix

```
In [60]:
          # defining a function to compute different metrics to check performance of a classification model built using ski
          def model performance classification sklearn(model, predictors, target):
              Function to compute different metrics to check classification model performance
              model: classifier
              predictors: independent variables
              target: dependent variable
              # predicting using the independent variables
              pred = model.predict(predictors)
              acc = accuracy_score(target, pred) # to compute Accuracy
              recall = recall score(target, pred) # to compute Recall
              precision = precision_score(target, pred) # to compute Precision
              f1 = f1_score(target, pred) # to compute F1-score
              # creating a dataframe of metrics
              df_perf = pd.DataFrame(
                  {"Accuracy": acc, "Recall": recall, "Precision": precision, "F1": f1,},
                  index=[0],
              return df_perf
```

```
In [61]:
          def confusion matrix sklearn(model, predictors, target):
              To plot the confusion_matrix with percentages
              model: classifier
              predictors: independent variables
              target: dependent variable
              y_pred = model.predict(predictors)
              cm = confusion_matrix(target, y_pred)
              labels = np.asarrav(
                      ["\{0:0.0f\}".format(item) + "\n\{0:.2\%\}".format(item / cm.flatten().sum())]
                      for item in cm.flatten()
              ).reshape(2, 2)
              plt.figure(figsize=(6, 4))
              sns.heatmap(cm, annot=labels, fmt="")
              plt.ylabel("True label")
              plt.xlabel("Predicted label")
```

Model with original data

```
models = [] # Empty list to store all the models

# Appending models into the list
models.append(("Logistic regression", LogisticRegression(random_state=1)))
models.append(("Bagging", BaggingClassifier(random_state=1)))
models.append(("Random forest", RandomForestClassifier(random_state=1)))
models.append(("GBM", GradientBoostingClassifier(random_state=1)))
models.append(("Adaboost", AdaBoostClassifier(random_state=1)))
models.append(("Xgboost", XGBClassifier(random_state=1, eval_metric="logloss")))
```

```
models.append(("dtree", DecisionTreeClassifier(random state=1)))
results1 = [] # Empty list to store all model's CV scores
names = [] # Empty list to store name of the models
# loop through all models to get the mean cross validated score
print("\n" "Cross-Validation Performance:" "\n")
for name, model in models:
    scoring = "recall'
    kfold = StratifiedKFold(
       n_splits=5, shuffle=True, random_state=1
      # Setting number of splits equal to 5
    cv result = cross val score(
        estimator=model, X=X_train, y=y_train, scoring=scoring, cv=kfold
    results1.append(cv_result)
    names.append(name)
    print("{}: {}".format(name, cv_result.mean() * 100))
print("\n" "Validation Performance:" "\n")
for name, model in models:
    model.fit(X_train, y_train)
    scores = recall_score(y_val, model.predict(X_val))
    print("{}: {}".format(name, scores))
```

Cross-Validation Performance:

Logistic regression: 10.857142857142858

Bagging: 33.357142857142854 Random forest: 25.178571428571427

GBM: 28.92857142857143 Adaboost: 16.392857142857142

Xgboost: 33.0

dtree: 38.857142857142854

Validation Performance:

Logistic regression: 0.12098501070663811

Bagging: 0.33190578158458245 Random forest: 0.25910064239828695 GBM: 0.2826552462526767

Adaboost: 0.16059957173447537 Xgboost: 0.33190578158458245 dtree: 0.3854389721627409

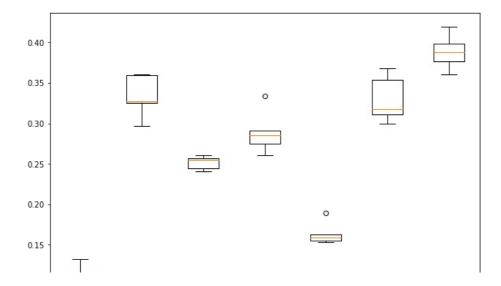
```
# Plotting boxplots for CV scores of all models defined above
fig = plt.figure(figsize=(10, 7))

fig.suptitle("Algorithm Comparison")
ax = fig.add_subplot(111)

plt.boxplot(results1)
ax.set_xticklabels(names)

plt.show()
```

Algorithm Comparison



Performance comparison

· dtree has the best performance followed by bagging

Models with Oversampled data

```
In [64]:
         sm = SMOTE(
            sampling_strategy=1, k_neighbors=5, random_state=1
           # Synthetic Minority Over Sampling Technique
         X_train_over, y_train_over = sm.fit_resample(X train, y train)
         print("After Oversampling, counts of label 'Yes': {}".format(sum(y train over == 1)))
         print("After Oversampling, counts of label 'No': {} \n".format(sum(y_train_over == 0)))
         print("After Oversampling, the shape of train X: {}".format(X train over.shape))
         print("After Oversampling, the shape of train_y: {} \n".format(y_train_over.shape))
        Before Oversampling, counts of label 'Yes': 2800
        Before Oversampling, counts of label 'No': 30084
        After Oversampling, counts of label 'Yes': 30084
        After Oversampling, counts of label 'No': 30084
        After Oversampling, the shape of train_X: (60168, 52)
        After Oversampling, the shape of train_y: (60168,)
```

```
In [65]:
           %%time
           models = [] # Empty list to store all the models
           # Appending models into the list
           models.append(("Logistic regression", LogisticRegression(random state=1)))
           models.append(("Bagging", BaggingClassifier(random_state=1)))
           models.append(("Random forest", RandomForestClassifier(random_state=1)))
           models.append(("GBM", GradientBoostingClassifier(random_state=1)))
          models.append(("Adaboost", AdaBoostClassifier(random_state=1)))
models.append(("Xgboost", XGBClassifier(random_state=1, eval_metric="logloss")))
           models.append(("dtree", DecisionTreeClassifier(random_state=1)))
           results2 = [] # Empty list to store all model's CV scores
           names = [] # Empty list to store name of the models
           # loop through all models to get the mean cross validated score
           print("\n" "Cross-Validation Performance:" "\n")
           for name, model in models:
               scoring = "recall"
               kfold = StratifiedKFold(
                   n splits=5, shuffle=True, random state=1
               ) # Setting number of splits equal to 5
               cv result = cross val score(
                   {\tt estimator=model}, \ \overline{X} = X \_ {\tt train\_over}, \ {\tt y=y\_train\_over}, \ {\tt scoring=scoring}, \ {\tt cv=kfold}, \ {\tt n\_jobs=-1}
               results2.append(cv_result)
               names.append(name)
               print("{}: {}".format(name, cv_result.mean() * 100))
           print("\n" "Validation Performance:" "\n")
           for name, model in models:
               model.fit(X_train_over, y_train_over)
               scores = recall score(y val, model.predict(X val))
               print("{}: {}".format(name, scores))
```

Logistic regression: 83.07407160209195 Bagging: 93.46164921905664

Random forest: 93.90373385779299

GBM: 85.76986658368664 Adaboost: 87.30554541388052 Xgboost: 92.10876585490048 dtree: 93.99348731342756

Validation Performance:

Logistic regression: 0.29014989293361887

Bagging: 0.31156316916488225 Random forest: 0.29229122055674517

GBM: 0.37794432548179874 Adaboost: 0.3222698072805139 Xgboost: 0.3747323340471092 dtree: 0.3747323340471092

CPU times: user 40.4 s, sys: 5.32 s, total: 45.7 s

Wall time: 45.2 s

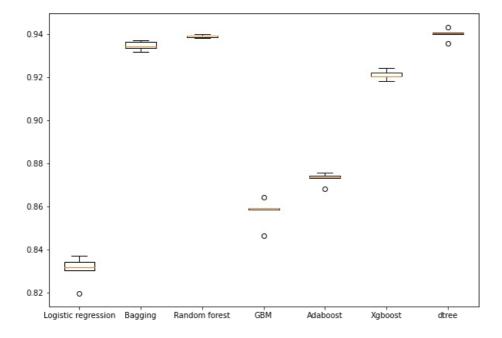
```
In [66]: # Plotting boxplots for CV scores of all models defined above
    fig = plt.figure(figsize=(10, 7))

    fig.suptitle("Algorithm Comparison")
    ax = fig.add_subplot(111)

    plt.boxplot(results2)
    ax.set_xticklabels(names)

    plt.show()
```

Algorithm Comparison



Performance comparison

- Random forest has the best performance followed by bagging
- Performance of all models in the validation set is poor

Models with Undersampled data

```
In [67]:
    rus = RandomUnderSampler(random_state=1)
    X_train_un, y_train_un = rus.fit_resample(X_train, y_train)
```

```
In [68]:
    print("Before Under Sampling, counts of label 'Yes': {}".format(sum(y_train == 1)))
    print("Before Under Sampling, counts of label 'No': {} \n".format(sum(y_train == 0)))
```

```
print("After Under Sampling, counts of label 'Yes': {}".format(sum(y_train_un == 1)))
print("After Under Sampling, counts of label 'No': {} \n".format(sum(y_train_un == 0)))

print("After Under Sampling, the shape of train_X: {}".format(X_train_un.shape))
print("After Under Sampling, the shape of train_y: {} \n".format(y_train_un.shape))

Before Under Sampling, counts of label 'Yes': 2800
Before Under Sampling, counts of label 'Yes': 2800
After Under Sampling, counts of label 'No': 2800

After Under Sampling, the shape of train_X: (5600, 52)
After Under Sampling, the shape of train_y: (5600,)
```

```
In [69]:
          models = [] # Empty list to store all the models
          # Appending models into the list
          models.append(("Logistic regression", LogisticRegression(random state=1, max iter=200)))
          models.append(("Bagging", BaggingClassifier(random_state=1)))
          models.append(("Random forest", RandomForestClassifier(random state=1)))
          models.append(("GBM", GradientBoostingClassifier(random state=1)))
          models.append(("Adaboost", AdaBoostClassifier(random_state=1)))
models.append(("Xgboost", XGBClassifier(random_state=1, eval_metric="logloss")))
          models.append(("dtree", DecisionTreeClassifier(random_state=1)))
          results3 = [] # Empty list to store all model's CV scores
          names = [] # Empty list to store name of the models
          # loop through all models to get the mean cross validated score
          print("\n" "Cross-Validation Performance:" "\n")
          for name, model in models:
              scoring = "recall"
              kfold = StratifiedKFold(
                  n splits=5, shuffle=True, random state=1
               ) # Setting number of splits equal to 5
              cv_result = cross_val score(
                  estimator=model, X=X train un, y=y train un, scoring=scoring, cv=kfold
              results3.append(cv_result)
              names.append(name)
              print("{}: {}".format(name, cv_result.mean() * 100))
          print("\n" "Validation Performance:" "\n")
          for name, model in models:
              model.fit(X_train_un, y_train_un)
               scores = recall score(y val, model.predict(X val))
              print("{}: {}".format(name, scores))
```

Cross-Validation Performance:

```
Logistic regression: 67.35714285714286
Bagging: 62.67857142857143
Random forest: 67.14285714285715
GBM: 61.10714285714286
Adaboost: 66.25
Xgboost: 64.750000000000001
dtree: 65.53571428571429

Validation Performance:

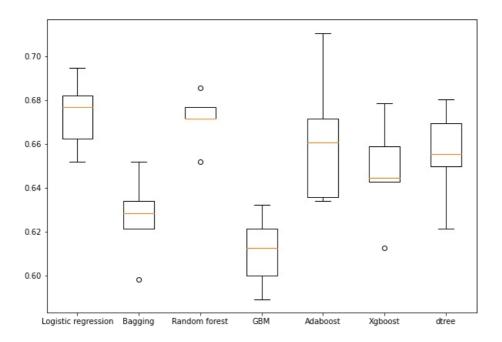
Logistic regression: 0.6852248394004282
Bagging: 0.6124197002141327
Random forest: 0.6702355460385439
GBM: 0.6231263383297645
Adaboost: 0.6702355460385439
Xgboost: 0.6541755888650964
dtree: 0.6413276231263383
```

```
In [70]: # Plotting boxplots for CV scores of all models defined above
fig = plt.figure(figsize=(10, 7))

fig.suptitle("Algorithm Comparison")
ax = fig.add_subplot(111)
```

```
plt.boxplot(results3)
ax.set_xticklabels(names)
plt.show()
```

Algorithm Comparison



Performance comparison

- Logistic Regression & random forest are performing equally well as per the validation performance
- It would seem that undersampling is not overfitting the data like in the oversampling case

Which models should be tuned?

- There is a mix and match of models and none are consistent. There is dtree, bagging, random forest and logistic regression
- Tune these 4 models (adding an extra one since the results are ambiguous).
- We will tune these 4 models using undersampled data.
- Sometimes models might overfit after undersampling and oversampling, so it's better to tune models with both undersampled data and original data

Tuning dtree

Tuning with Undersampled data

```
In [71]:
          %time
          # defining model
          Model = DecisionTreeClassifier(criterion = 'gini', random state=1)
          #Parameter grid to pass in RandomSearchCV
          param_grid={'max_depth': np.arange(1,10),
                          'min_samples_leaf': [1, 2, 5, 7, 10,15,20],
'max_leaf_nodes' : [2, 3, 5, 10],
                          'min_impurity_decrease': [0.001,0.01,0.1]
          from sklearn import metrics
          # Type of scoring used to compare parameter combinations
          scorer = metrics.make_scorer(metrics.recall_score)
          #Calling RandomizedSearchCV
           randomized cv = RandomizedSearchCV(estimator=Model, param distributions=param grid, n iter=50, n jobs = -1, scori
          #Fitting parameters in RandomizedSearchCV
          randomized_cv.fit(X_train_un,y_train_un)
          print("Best parameters are {} with CV score={}:" .format(randomized_cv.best_params_,randomized_cv.best_score_))
```

```
In [72]:
          %%time
          # defining model
          Model = DecisionTreeClassifier(criterion = 'gini', random state=1)
          #Parameter grid to pass in RandomSearchCV
          param_grid={'max_depth': np.arange(1,10),
                         'min_samples_leaf': [1, 2, 5, 7, 10,15,20],
                         'max leaf nodes' : [2, 3, 5, 10],
                         'min_impurity_decrease': [0.001,0.01,0.1]
          from sklearn import metrics
          # Type of scoring used to compare parameter combinations
          scorer = metrics.make_scorer(metrics.recall_score)
          #Calling RandomizedSearchCV
          randomized_cv = RandomizedSearchCV(estimator=Model, param_distributions=param_grid, n_iter=50, n_jobs = -1, scori
          #Fitting parameters in RandomizedSearchCV
          randomized_cv.fit(X_train_un,y_train_un)
          print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score ))
         Best parameters are {'min_samples_leaf': 2, 'min_impurity_decrease': 0.001, 'max_leaf_nodes': 10, 'max_depth': 8}
         with CV score=0.5921428571428571:
         CPU times: user 195 ms, sys: 24.7 ms, total: 220 ms
         Wall time: 386 ms
In [73]:
          %time
          tuned_dtree1 = DecisionTreeClassifier(
              random_state=1,
              min_samples_leaf=2,
min_impurity_decrease=0.001,
              max leaf nodes=10,
              max_depth=8,
          tuned_dtree1.fit(X_train_un, y_train_un)
         CPU times: user 8.63 ms, sys: 689 μs, total: 9.32 ms
         Wall time: 8.55 ms
Out[73]: DecisionTreeClassifier(max depth=8, max leaf nodes=10,
                                 min impurity decrease=0.001, min samples leaf=2,
                                 random_state=1)
In [74]:
          # Checking model's performance on train set
          dtree1_train = model_performance_classification_sklearn(
              tuned_dtree1, X_train_un, y_train_un
          dtree1 train
                                      F1
Out[74]:
            Accuracy Recall Precision
               0.688 0.591
                              0.734 0.655
In [75]:
          # Checking model's performance on validation set
          dtreel val = model performance classification sklearn(tuned dtreel, X val, y val)
          dtree1 val
Out[75]:
            Accuracy Recall Precision
                                      F1
```

Best parameters are {'min_samples_leaf': 2, 'min_impurity_decrease': 0.001, 'max_leaf_nodes': 10, 'max_depth': 8}

with CV score=0.5921428571428571:

Wall time: 353 ms

0.770 0.596

0.207 0.307

CPU times: user 267 ms, sys: 73.1 ms, total: 340 ms

Tuning with Original data

```
In [76]:
          %%time
          # defining model
          Model = DecisionTreeClassifier(criterion = 'gini', random_state=1)
          #Parameter grid to pass in RandomSearchCV
          param_grid={'max_depth': np.arange(1,10),
                        'min_samples_leaf': [1, 2, 5, 7, 10,15,20],
                         'max_leaf_nodes' : [2, 3, 5, 10],
                        'min_impurity_decrease': [0.001,0.01,0.1]
          from sklearn import metrics
          # Type of scoring used to compare parameter combinations
          scorer = metrics.make_scorer(metrics.recall_score)
          #Calling RandomizedSearchCV
          randomized cv = RandomizedSearchCV(estimator=Model, param distributions=param grid, n iter=50, n jobs = -1, scori
          #Fitting parameters in RandomizedSearchCV
          randomized_cv.fit(X_train,y_train)
          print("Best parameters are {} with CV score={}:" .format(randomized_cv.best_params_,randomized_cv.best_score_))
         Best parameters are {'min_samples_leaf': 2, 'min_impurity_decrease': 0.001, 'max_leaf_nodes': 10, 'max_depth': 8}
         with CV score=0.15035714285714286:
         CPU times: user 333 ms, sys: 96.1 ms, total: 429 ms
         Wall time: 1.24 s
In [77]:
          tuned dtree2 = DecisionTreeClassifier(
              random state=1.
              min_samples_leaf=2,
              min_impurity_decrease=0.001,
              max_leaf_nodes=10,
              max_depth=8,
          tuned dtree2.fit(X train un, y train un)
          tuned_dtree2.fit(X_train, y_train)
Out[77]: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=10,
                                min_impurity_decrease=0.001, min_samples_leaf=2,
                                random_state=1)
In [78]:
          # Checking model's performance on training set
          dtree2_train = model_performance_classification_sklearn(tuned_dtree2, X_train, y_train)
          dtree2_train
         Accuracy Recall Precision
Out[78]:
            0.925 0.141
                          0.861 0.242
In [79]:
          # Checking model's performance on validation set
          dtree2_val = model_performance_classification_sklearn(tuned_dtree2, X_val, y_val)
          dtree2_val
         Accuracy Recall Precision
Out[79]:
               0.924 0.136 0.836 0.234
```

Tuning Logistic Regression

Tuning with Undersampled data

```
In [80]: | %time
          # defining model
          Model = LogisticRegression(random state=1)
          # Parameter grid to pass in RandomSearchCV
          param grid = {
              'penalty': ['l2'],'C':[0.001,.009,0.01,.09,1,5,10,25], 'solver':['newton-cg', 'lbfgs', 'liblinear']
          # Type of scoring used to compare parameter combinations
          scorer = metrics.make scorer(metrics.recall score)
          #Calling RandomizedSearchCV
          randomized cv = RandomizedSearchCV(estimator=Model, param distributions=param grid, n jobs = -1, n iter=50, scori
          #Fitting parameters in RandomizedSearchCV
          randomized cv.fit(X train un,y train un)
          print("Best parameters are {} with CV score={}:" .format(randomized_cv.best_params_,randomized_cv.best_score_))
         Best parameters are {'solver': 'liblinear', 'penalty': 'l2', 'C': 0.009} with CV score=0.6875:
         CPU times: user 196 ms, sys: 19 ms, total: 215 ms
         Wall time: 1.83 s
In [81]:
          %%time
          # defining model
          Model = LogisticRegression(solver="liblinear", random state=1)
          # Parameter grid to pass in RandomSearchCV
          param grid = {
              'penalty': ['l2'],'C':[0.001,.009,0.01,.09,1,5,10,25], 'solver': ['liblinear']
          # Type of scoring used to compare parameter combinations
          scorer = metrics.make scorer(metrics.recall score)
          #Calling RandomizedSearchCV
          randomized cv = RandomizedSearchCV(estimator=Model, param distributions=param grid, n jobs = -1, n iter=50, scori
          #Fitting parameters in RandomizedSearchCV
          randomized cv.fit(X train un,y train un)
          print("Best parameters are {} with CV score={}:" .format(randomized_cv.best_params_,randomized_cv.best_score_))
         Best parameters are {'solver': 'liblinear', 'penalty': 'l2', 'C': 0.009} with CV score=0.6875:
         CPU times: user 60 ms, sys: 6.83 ms, total: 66.9 ms
         Wall time: 214 ms
In [82]:
          tuned log1 = LogisticRegression(
              random_state=1, penalty="l2", C=0.009, solver="liblinear"
          tuned log1.fit(X train un, y train un)
Out[82]: LogisticRegression(C=0.009, random_state=1, solver='liblinear')
In [83]:
          # Checking model's performance on training set
          log1 train = model performance classification sklearn(
              tuned log1, X train un, y train un
          log1 train
          Accuracy Recall Precision
                                     F1
Out[83]:
            0.656 0.687
                             0.647 0.666
In [84]:
          # Checking model's performance on validation set
          log1 val = model performance classification sklearn(tuned log1, X val, y val)
          log1 val
```

```
        Out[84]:
        Accuracy
        Recall
        Precision
        F1

        0
        0.639
        0.678
        0.148
        0.242
```

Tuning with Original data

```
In [85]:
          %%time
          # defining model
          Model = LogisticRegression(random_state=1)
          # Parameter grid to pass in RandomSearchCV
          param_grid = {
    'penalty': ['l2'],'C':[0.001,.009,0.01,.09,1,5,10,25],'solver': ['liblinear']
          }
          # Type of scoring used to compare parameter combinations
          scorer = metrics.make_scorer(metrics.recall_score)
          #Calling RandomizedSearchCV
          randomized_cv = RandomizedSearchCV(estimator=Model, param_distributions=param_grid, n_jobs = -1, n_iter=50, scori
          #Fitting parameters in RandomizedSearchCV
          randomized cv.fit(X train,y train)
          print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score ))
         Best parameters are {'solver': 'liblinear', 'penalty': 'l2', 'C': 25} with CV score=0.26357142857142857:
         CPU times: user 285 ms, sys: 209 ms, total: 494 ms
         Wall time: 987 ms
In [86]:
          tuned log2 = LogisticRegression(random state=1, penalty="l2", C=25, solver="liblinear")
          tuned_log2.fit(X_train, y_train)
Out[86]: LogisticRegression(C=25, random_state=1, solver='liblinear')
In [87]:
          # Checking model's performance on validation set
          log2_val = model_performance_classification_sklearn(tuned_log2, X_val, y_val)
          log2 val
Out[87]:
          Accuracy Recall Precision
               0.937
                     0.283
                              0.943 0.435
In [88]:
          # Checking model's performance on training set
          log2_train = model_performance_classification_sklearn(tuned_log2, X_train, y_train)
          log2_train
           Accuracy Recall Precision
                                      F1
Out[88]:
```

Tuning Bagging

0.937

0.269

Tuning with Undersampled Data

0.954 0.420

```
#Parameter grid to pass in RandomSearchCV
          param_grid = {
              'n estimators' : [100, 300, 500, 800, 1200],
          #max depth = [5, 10, 15, 25, 30]
'max_samples' : [5, 10, 25, 50, 100],
'max_features' : [1, 2, 5, 10, 13],
          # Type of scoring used to compare parameter combinations
          scorer = metrics.make_scorer(metrics.recall_score)
          #Calling RandomizedSearchCV
          randomized_cv = RandomizedSearchCV(estimator=Model, param_distributions=param_grid, n_iter=50, scoring=scorer, cv
          #Fitting parameters in RandomizedSearchCV
          randomized_cv.fit(X_train_un,y_train_un)
          print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score ))
         CPU times: user 1.09 s, sys: 299 ms, total: 1.39 s
         Wall time: 21.2 s
In [90]:
          tuned_bag1 = BaggingClassifier(
              random state=1, n estimators=500, max samples=5, max features=1,
          tuned bag1.fit(X train un, y train un)
Out[90]: BaggingClassifier(max features=1, max samples=5, n estimators=500,
                           random_state=1)
In [91]:
          # Checking model's performance on training set
          bag1 train = model performance classification sklearn(
             tuned_bag1, X_train_un, y_train_un
          bag1_train
           Accuracy Recall Precision
Out[91]:
                                    F1
              0.548 0.840
                             0.530 0.650
In [92]:
          # Checking model's performance on validation set
          bag1 val = model performance classification sklearn(tuned bag1, X val, y val)
          bag1 val
                                    F1
           Accuracy Recall Precision
                             0.098 0.176
```

Tuning with Original data

```
#defining model
Model = BaggingClassifier(random_state=1)

#Parameter grid to pass in RandomSearchCV
param_grid = {
         'n_estimators': [100, 300, 500, 800, 1200],
          #max_depth = [5, 10, 15, 25, 30]
          'max_samples': [5, 10, 25, 50, 100],
          'max_features': [1, 2, 5, 10, 13],
}

# Type of scoring used to compare parameter combinations
scorer = metrics.make_scorer(metrics.recall_score)

#Calling RandomizedSearchCV
randomized_cv = RandomizedSearchCV(estimator=Model, param_distributions=param_grid, n_iter=50, scoring=scorer, cv
```

```
#Fitting parameters in RandomizedSearchCV
          randomized_cv.fit(X_train,y_train)
          print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score ))
         Best parameters are {'n_estimators': 1200, 'max_samples': 100, 'max_features': 5} with CV score=0.0:
         CPU times: user 2.85 s, sys: 278 ms, total: 3.13 s
         Wall time: 43 s
In [94]:
          tuned_bag2 = BaggingClassifier(
              random state=1, n estimators=1200, max samples=100, max features=5,
          tuned bag2.fit(X train, y train)
Out[94]: BaggingClassifier(max features=5, max samples=100, n estimators=1200,
                            random_state=1)
In [95]:
          # Checking model's performance on training set
          bag2 train = model performance classification sklearn(tuned bag2, X train, y train)
          bag2_train
          Accuracy Recall Precision
                                     F1
              0.915 0.000
                             0.000 0.000
In [96]:
          # Checking model's performance on validation set
          bag2_val = model_performance_classification_sklearn(tuned_bag2, X_val, y_val)
          bag2_val
Out[96]:
          Accuracy Recall Precision
               0.915 0.000
                              0.000 0.000
```

Tuning Random Forest

max_depth=30

Tuning with Undersampled Data

```
In [ ]:
         %%time
         #Creating pipeline
         Model = RandomForestClassifier(random_state=1)
         #Parameter grid to pass in RandomSearchCV
            'n estimators' : [100, 300, 500, 800, 1200],
          'max_depth' : [5, 10, 15, 25, 30],
         'min_samples_split' :[2, 5, 10, 15, 100],
'min_samples_leaf' : [1, 2, 5, 10]
         # Type of scoring used to compare parameter combinations
         scorer = metrics.make scorer(metrics.recall score)
         #Calling RandomizedSearchCV
         randomized cv = RandomizedSearchCV(estimator=Model, param distributions=param grid, n iter=50, scoring=scorer, cv
         #Fitting parameters in RandomizedSearchCV
         randomized cv.fit(X train un,y train un)
         print("Best parameters are {} with CV score={}:" .format(randomized_cv.best_params_,randomized_cv.best_score_))
In [ ]:
         tuned forest1 = RandomForestClassifier(
              random_state=1,
             n estimators=100,
             min_samples_split=5,
             min samples leaf=2,
```

```
In [ ]:
         %time
         #defining model
         Model = RandomForestClassifier(random_state=1)
         #Parameter grid to pass in RandomSearchCV
         param_grid = {
            'n_estimators' : [100, 300, 500, 800, 1200],
         'max_depth' : [5, 10, 15, 25, 30],
'min_samples_split' :[2, 5, 10, 15, 100],
         'min_samples_leaf' : [1, 2, 5, 10]
         # Type of scoring used to compare parameter combinations
         scorer = metrics.make_scorer(metrics.recall_score)
         #Calling RandomizedSearchCV
         randomized_cv = RandomizedSearchCV(estimator=Model, param_distributions=param_grid, n_iter=50, scoring=scorer, cv
         #Fitting parameters in RandomizedSearchCV
         randomized_cv.fit(X_train,y_train)
         print("Best parameters are {} with CV score={}:" .format(randomized_cv.best_params_,randomized_cv.best_score_))
In [ ]:
         tuned forest2 = RandomForestClassifier(
             random_state=1,
             n estimators=300
             min samples split=2,
             min_samples_leaf=1,
             max_depth=30
         tuned forest2.fit(X train un, y train un)
In [ ]:
         # Checking model's performance on training set
         forest2_train = model_performance_classification_sklearn(
             tuned_forest2, X_train_un, y_train_un
         forest2_train
In [ ]:
         # Checking model's performance on validation set
         forest2_val = model_performance_classification_sklearn(tuned_forest2, X_val, y_val)
         forest2 val
In [ ]:
```

Model Performance comparison

```
forest1 train.T.
                 forest2_train.T
             axis=1,
         models_train_comp_df.columns = [
             "Decision Tree trained with Undersampled data",
             "Decision Tree trained with Original data",
             "Logistic Regression trained with Undersampled data",
             "Logistic Regression trained with Original data",
             "Bagging trained with Undersampled data",
             "Bagging trained with Original data",
             "Random forest trained with Undersampled data",
             "Random forest trained with Original data"
         print("Training performance comparison:")
         models train comp df
In [ ]:  # Validation performance comparison
         models_train_comp_df = pd.concat(
             [dtreel val.T, dtree2 val.T, log1 val.T, log2 val.T, bag1 val.T, bag2 val.T, forest1 val.T, forest2 val.T],
             axis=1,
         models train comp df.columns = [
             "Decision Tree trained with Undersampled data",
             "Decision Tree trained with Original data",
             "Logistic Regression trained with Undersampled data",
             "Logistic Regression trained with Original data",
             "Bagging trained with Undersampled data",
             "Bagging trained with Original data"
             "Random forest trained with Undersampled data",
             "Random forest trained with Original data"]
         print("Validation performance comparison:")
         models_train_comp_df
```

• Random Forest model trained with original data has generalised performance

```
In [ ]: # Let's check the performance on test set
forest2_test = model_performance_classification_sklearn(tuned_forest2, X_test, y_test)
forest2_test
```

• The model has given generalised performance on test set.

```
feature_names = X_train.columns
importances = tuned_forest2.feature_importances_
indices = np.argsort(importances)

plt.figure(figsize=(12, 12))
plt.title("Feature Importances")
plt.barh(range(len(indices)), importances[indices], color="violet", align="center")
plt.yticks(range(len(indices)), [feature_names[i] for i in indices])
plt.xlabel("Relative Importance")
plt.show()
```

• Avg_training_score is the most important variable in predicting employee promotion followed by age, length_of_service, previous_year_rating and awards_won

Final Pipelin/Model

```
# creating a transformer for categorical variables, which will first apply simple imputer and
         #then do one hot encoding for categorical variables
         categorical_transformer = Pipeline(
             steps=[
                 ("imputer", SimpleImputer(strategy="most frequent")),
                 ("onehot", OneHotEncoder(handle_unknown="ignore")),
         # handle unknown = "ignore", allows model to handle any unknown category in the test data
         # combining categorical transformer and numerical transformer using a column transformer
         preprocessor = ColumnTransformer(
             transformers=[
                 ("num", numeric_transformer, numerical_features),
                 ("cat", categorical_transformer, categorical_features),
             remainder="drop",
         # remainder = "drop" has been used, it will drop the variables that are not present in "numerical_features"
         # and "categorical_features"
In [ ]:
         # Separating target variable and other variables
         X = prediction.drop(columns="is_promoted")
         Y = prediction["is_promoted"]
         · pre-processing
In [ ]:
         # employee ID are unique values and will not add value to the modeling
         X.drop(["employee_id"], axis=1, inplace=True)
         · Using the best model random forest
In [ ]:
         # Splitting the data into train and test sets
         X_train, X_test, y_train, y_test = train_test_split(
             X, Y, test_size=0.30, random_state=1, stratify=Y
         print(X train.shape, X test.shape)
In [ ]:
         # Creating new pipeline with best parameters
         model = Pipeline(
            steps=[
                 ("pre", preprocessor),
                     "RF", RandomForestClassifier(
             random state=1,
             n_estimators=300,
             min samples split=2,
             min samples leaf=1,
             max_depth=30
```

Key Insights:

),

Fit the model on training data
model.fit(X_train, y_train)

Important Factors Influencing Promotion:

Average Training Score: Higher training scores significantly improve the likelihood of promotion. Previous Year Rating: Higher ratings in the previous year positively correlate with promotions. Length of Service: Employees with longer service are more likely to be promoted. Awards Won: Winning awards in the previous year significantly increases the chances of promotion. Age: There is a noticeable trend where certain age groups have higher promotion rates. Departmental Influence:

Employees in the Technology, Procurement, and Analytics departments have a higher likelihood of being promoted compared to other departments. Gender and Promotion:

There is no significant difference in promotion rates between male and female employees, indicating gender neutrality in promotions. Education Level:

Employees with a Master's degree or higher have a slightly better chance of being promoted compared to those with a Bachelor's degree or below. Region Impact:

Certain regions, like Region 2 and Region 22, have higher promotion rates, suggesting potential regional biases or differences in performance standards. Recommendations: Focus on Training and Development:

Enhance Training Programs: Invest in training programs to improve average training scores. Employees with higher training scores are more likely to be promoted. Regular Assessments: Conduct regular assessments and provide feedback to help employees improve their training scores. Reward and Recognition:

Incentivize Awards: Encourage and incentivize employees to participate in award programs, as winning awards significantly boosts promotion chances. Transparent Criteria: Clearly communicate the criteria for winning awards to all employees. Performance Ratings:

Objective Evaluation: Ensure performance ratings are objective and consistent across departments to avoid biases. Regular Reviews:

Conduct regular performance reviews and provide constructive feedback to help employees improve their ratings. Tenure and Experience:

Career Path Planning: Develop clear career paths that outline the progression opportunities for employees based on their tenure and performance. Mentorship Programs: Implement mentorship programs to support employees' career development and readiness for promotion. Age and Promotion:

Age Diversity: Ensure that promotion policies do not inadvertently favor or disadvantage certain age groups. Promote age diversity and inclusivity in the workplace. Departmental Balance:

Cross-Departmental Opportunities: Provide opportunities for employees in lower-promotion departments to participate in projects or roles in higher-promotion departments. Standardize Criteria: Standardize promotion criteria across departments to ensure fairness and consistency. Regional Considerations:

Uniform Standards: Implement uniform performance standards across all regions to ensure equal opportunities for promotion. Regional Training Programs: Address regional disparities by providing additional support and training programs in regions with lower promotion rates. Implementation Steps: Model Deployment:

Deploy the Random Forest model with the best parameters to predict promotions. Integrate the model into the HR system to assist in making informed promotion decisions. Continuous Monitoring and Improvement:

Regularly monitor the model's performance and update it with new data to ensure its accuracy and relevance. Use feedback from the promotion process to refine and improve the model. Employee Feedback:

Gather feedback from employees on the promotion process to identify areas for improvement. Ensure transparency and communication about how promotions are decided and what employees can do to enhance their chances.* We have been able to build a predictive model:

- The company can utilize this model to predicte employee promotion
- The analysis can be used to distinguish and effect factors that drive promotion
- THe company can use the information to build "better" paths to promotion. Interestingly the random forest using original data gave us "age" as a factor that influences promotion, this should be investigated further in order to institue policies that promote fairness in all age groups
- Factors that help promotion length_of_service, awards_won, previous_year_rating, age, avg_training_score
- awards_won. This factor influences prmotion positively, in other words if the employee has won an award it means that the likelihood of promotion is higher
- previous_year_rating. The factor influences promotion the higher the ranking the higher the chances of promotion
- length_of_service. This factor is somewhat intuitive as the longer the tenure of an employee the higher the chances for promotion
- There was an important factor potentially missing from the model which is department. The data analysis shows a correlation of people belonging to Technology to have a propensity of promotion over other groups