Employee Promotion Prediction

Description

Background & Context

Employee Promotion means the ascension of an employee to higher ranks, this aspect of the job is what drives employees the most. The
ultimate reward for dedication and loyalty towards an organization and HR team plays an important role in handling all these promotion tasks
based on ratings and other attributes available.

The HR team in JMD company stored data of promotion cycle last year, which consists of details of all the employees in the company
working last year and also if they got promoted or not, but every time this process gets delayed due to so many details available for each
employee - it gets difficult to compare and decide.

So this time HR team wants to utilize the stored data to make a model, that will predict if a person is eligible for promotion or not.

You as a data scientist at JMD company, need to come up with a model that will help the HR team to predict if a person is eligible for
promotion or not.

Objective

Explore and visualize the dataset. Build a classification model to predict if the employee has a higher probability of getting a promotion
Optimize the model using appropriate techniques Generate a set of insights and recommendations that will help the company

Data Dictionary:

e employee_id: Unique ID for the employee

e department: Department of employee

e region: Region of employment (unordered)

e education: Education Level

e gender: Gender of Employee

e recruitment_channel: Channel of recruitment for employee

e no of trainings: no of other trainings completed in the previous year on soft skills, technical skills, etc.
e age: Age of Employee

e previous year rating: Employee Rating for the previous year

¢ length of service: Length of service in years

e awards_ won: if awards won during the previous year then 1 else 0
e avg fraining score: Average score in current training evaluations

e is_promoted: (Target) Recommended for promotion

Importing Libraries

This will help in making the Python code more structured automatically (good coding practice)
%Lload_ext nb black

Libraries to help with reading and manipulating data
import pandas as pd
import numpy as np

Libaries to help with data visualization
import matplotlib.pyplot as plt
import seaborn as sns

To tune model, get different metric scores, and split data
from sklearn.metrics import (

fl score,

accuracy score,

recall score,

precision_score,

confusion matrix,

roc_auc_score,

plot_confusion _matrix,
)

from sklearn.model selection import train test split, StratifiedKFold, cross val score

To be used for data scaling and one hot encoding
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder

To
from

To
from
from

To
from

To
from
from

To

impute missing values
sklearn.impute import SimpleImputer

oversample and undersample data
imblearn.over sampling import SMOTE
imblearn.under sampling import RandomUnderSampler

do hyperparameter tuning
sklearn.model_selection import RandomizedSearchCV

be used for creating pipelines and personalizing them

sklearn.pipeline import Pipeline
sklearn.compose import ColumnTransformer

define maximum number of columns to be displayed in a dataframe
pd.set option("display.max columns", None)

To supress scientific notations for a dataframe
pd.set option("display.float format", lambda x: "%.3f" % Xx)
To help with model building
from sklearn.linear model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import (
AdaBoostClassifier,
GradientBoostingClassifier,
RandomForestClassifier,
BaggingClassifier,
)
from xgboost import XGBClassifier
To suppress scientific notations
pd.set option("display.float format", lambda x: "%.3f" % Xx)
To supress warnings
import warnings
warnings.filterwarnings("ignore")
Loading Data
prediction = pd.read csv("employee promotion.csv")
Checking the number of rows and columns in the data
prediction.shape
(54808, 13)
e The dataset has 54808 rows and 13 columns
Data Overview
let's create a copy of the data
data = prediction.copy()
let's view the first 5 rows of the data
data.head()
employee_id department region education gender recruitment_channel
Sales &) Master's & .
0 65438 Marketing region_7 above f sourcing
1 65141 Operations region_22 Bachelor's m other
Sales &) ,
2 7513 Marketing region_19 Bachelor's m sourcing
Sales &) .
3 2542 Marketing region_23 Bachelor's m other
4 48945 Technology region_26 Bachelor's m other

no_of_trainings age previous_year_rating

1

35

30

34

39

45

5.000

5.000

3.000

1.000

3.000

length_of_service a
8

4

let's view the last 5 rows of the data

data.tail()

employee_id department

region education

54803 3030 Technology region_14 Bachelor's

54804 74592 Operations region_27 St &

above

54805 13918 Analytics region_1 Bachelor's
Sales & .

54806 13614 Marketing region_9 NaN

54807 51526 HR region_22 Bachelor's

gender

m

f

recruitment_channel

sourcing
other
other
sourcing

other

let's check the data types of the columns in the dataset

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 54808 entries, 0 to 54807
Data columns (total 13 columns):
Non-Null Count

Column

0 employee id

1 department

2 region

3 education

4 gender

5 recruitment channel
6 no of trainings

7 age

8 previous year rating

©

10 awards won

length of service

11 avg training score

12 is promoted

54808
54808
54808
50684
54808
54808
52248
54808

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

dtypes: float64(2), int64(6), object(5)

memory usage: 5.4+ MB

e 5 columns are of object type rest all are numerical.

int64
float64
int64
int64
float64
int64

let's check for duplicate values in the data
data.duplicated().sum()

let's check for missing values in the data
round(data.isnull().sum() / data.isnull().count() * 100, 2)

employee id
department

region

education

gender

recruitment channel
no of trainings

age
previous year rating
length of service
awards_won

avg training score
is promoted

dtype: float64

O, oOoONOCOOOR~ROOO

.000
.000
.000
.400
.000
.000
.000
.000
.520
.000
.000
.670
.000

no_of_trainings

1

1

age previous_year_rating

48

37

27

29

27

3.000

2.000

5.000

1.000

1.000

length_of_servic

1

e Education_Level has 4.4% missing values
e previous_year_rating has 7.52% missing values
e average_training_score has 4.67% missing values

let's view the statistical summary of the numerical columns in the data
data.describe().T

count mean std min 25% 50% 75% max

employee_id 54808.000 39195.831 22586.581 1.000 19669.750 39225.500 58730.500 78298.000

no_of_trainings 54808.000 1.253 0.609 1.000 1.000 1.000 1.000 10.000

age 54808.000 34.804 7.660 20.000 29.000 33.000 39.000 60.000
previous_year_rating 50684.000 3.329 1.260 1.000 3.000 3.000 4.000 5.000
length_of_service 54808.000 5.866 4.265 1.000 3.000 5.000 7.000 37.000
awards_won 54808.000 0.023 0.150 0.000 0.000 0.000 0.000 1.000

avg_training_score 52248.000 63.712 13.522 39.000 51.000 60.000 77.000 99.000

is_promoted 54808.000 0.085 0.279 0.000 0.000 0.000 0.000 1.000

Observations:

e employee_id: It is a unique identifier tht can be dropped for analysis

e no_of_rtrainings: Average trainings is 1.25, years, min is 1 and max is 10

e age: Average employee age is 34 years, min is 20 and max is 60

e previous_year rating: The rating last year in average is 3.3 with a minimum of 1 and a maximum of 5

e length_of service: On average the length of service is 5.8 years with a minimum of 1 year and a maximum of 37
e awards_won: On average JMD awards .02 awards with a minimum of 0 and a maximum of 1

e avg_training_score: THe average training score is 63 with a minimum score of 39 to 99

e is_promoted: This is our dependent variable

data.describe(include=["object"]).T

count unique top freq

department 54808 9 Sales & Marketing 16840

region 54808 34 region_2 12343

education 52399 3 Bachelor's 36669

gender 54808 2 m 38496
recruitment_channel 54808 3 other 30446

for i in data.describe(include=["object"]).columns:
print("Unique values in", i, "are :")
print(data[i].value counts())
print("*" * 50)

Unique values in department are
Sales & Marketing 16840

Operations 11348
Procurement 7138
Technology 7138
Analytics 5352
Finance 2536
HR 2418
Legal 1039
R&D 999

Name: department, dtype: int64
Sk 3k 3K ok >k >k Sk >k ok Sk >k ok Sk 3k ok Sk >k ok Sk >k ok Sk >k ok Sk >k ok Sk >k ok sk >k ok Sk >k ok Sk >k ok sk >k ok kK ook kK ok sk ok

Unique values in region are

region 2 12343
region 22 6428
region 7 4843
region 15 2808
region 13 2648
region 26 2260
region 31 1935

region_4 1703

region 27 1659

region 16 1465
region 28 1318
region_11 1315
region_23 1175
region 29 994
region 32 945
region 19 874
region 20 850
region_14 827
region 25 819
region 17 796
region 5 766
region 6 690
region 30 657
region 8 655
region 10 648
region 1 610
region 24 508
region 12 500
region 9 420
region 21 411
region 3 346
region 34 292
region 33 269
region_18 31

Name: region, dtype: int64
3k 3k >k 3k 5k >k 3k 3k >k 3k >k >k 3k >k >k 3k >k >k 3k >k >k 3k >k >k 5k >k >k 3k >k >k 3k >k >k 3k >k >k 3k >k >k 3k >k >k %k >k >k >k >k >k k k

Unique values in education are :

Bachelor's 36669
Master's & above 14925
Below Secondary 805

Name: education, dtype: int64

Sk 3k 5K ok >k >k Sk >k 5k Sk >k ok Sk >k ok Sk >k ok Sk >k ok Sk >k ok Sk >k ok Sk >k ok Sk >k ok Sk >k ok Sk >k ok sk >k ok kK ok kK ok sk ok
Unique values in gender are :

m 38496

f 16312

Name: gender, dtype: int64

>k 3k 3k ok 3k sk ok ok ok ok ok ok ok sk ok ok >k >k >k >k >k >k >k ok >k Sk Sk ok ok Sk sk ok ok sk sk sk ok ok sk ok >k >k >k >k >k >k >k k ok k

Unique values in recruitment channel are :

other 30446
sourcing 23220
referred 1142

Name: recruitment channel, dtype: int64
Sk >k >k ok >k >k Sk >k ok Sk >k ok Sk >k ok Sk >k ok Sk >k ok Sk >k ok Sk >k ok Sk >k ok Sk >k ok Sk >k ok Sk >k ok sk >k ok kK ok kK ok sk ok

Observations

e There are 9 distinct departments at JMD.

e Most of the employees are male at an approximate ration 2.5 to 1

e Most employees were recruited from other channels.

e Most employees have a bachelors degree.

e There are 34 different regions where employees work

e There are some missing values in previous_year_rating, education and average_training_score. Some of the missing values might be
due to new hires

Data Pre-processing

employee id consists of uniques ID employees and hence will not add value to the modeling
data.drop(["employee id"], axis=1, inplace=True)

Encoding not promoted and promoted employees to 0@ and 1 respectively, for analysis.
data["is promoted"].replace("Employee", 0, inplace=True)
data["is promoted"].replace("Promoted Employee", 1, inplace=True)

EDA

Univariate analysis

function to plot a boxplot and a histogram along the same scale.

def histogram boxplot(data, feature, figsize=(12, 7), kde=False, bins=None):

Boxplot and histogram combined

data: dataframe
feature: dataframe column
figsize: size of figure (default (12,7))
kde: whether to the show density curve (default False)
bins: number of bins for histogram (default None)
2, (ax_box2, ax hist2) = plt.subplots(
nrows=2, # Number of rows of the subplot grid= 2
sharex=True, # x-axis will be shared among all subplots
gridspec_kw={"height ratios": (0.25, 0.75)},
figsize=figsize,
) # creating the 2 subplots
sns.boxplot(
data=data, x=feature, ax=ax box2, showmeans=True, color="violet"
) # boxplot will be created and a star will indicate the mean value of the column
sns.histplot(
data=data, x=feature, kde=kde, ax=ax hist2, bins=bins, palette="winter"
) if bins else sns.histplot(
data=data, x=feature, kde=kde, ax=ax hist2
) # For histogram
ax_hist2.axvline(
data[feature].mean(), color="green", linestyle="--"
) # Add mean to the histogram
ax_hist2.axvline(
data[feature].median(), color="black", linestyle="-"
) # Add median to the histogram

Observations on no_of _trainings

histogram boxplot(data, "no of trainings")

T
no_of_trainings

40000 4

30000 4

Count

20000

10000 4

4 6] 10
no_of_trainings

e The distribution of number of trainings is skewed to the right with most employees having less than 2 trainings
e From the boxplot, we can see that there are a several outliers.

Observations on age

histogram boxplot(data, "age")

I e h & & & & B

3500 A

3000

e The distribution of age is slightly skewed to the right with an average of 35 years old
e From the boxplot, we can see that there are outliers to the older side of age

Observations on previous_year_rating

histogram boxplot(data, "previous year rating")

previuus_ylear_rati ng

17500 1
15000 1
12500 -

E 10000 -

7500
5000

2500 1

10 15 20 25 30 5 40 45 5.0
previous_year_rating

e This is a 5 odd distributed curve, most values are centered. However we can see that there is at least 10% of the population that is
under-performing (score = 1) and about 20% is over-performing (score=5)

Observations on length_of service

histogram boxplot(data, "length of service")

LI I BN N B B B B B B DN R O BN B B BN BN B RN +

Iength_u-f_sér\.ril:e

I

50000 4

40000 4

Count

20000

10000 1

1T T
10 15 20

30000 4

= 0 £
length_of service
e The distribution of service is skewed to the right with several outlies passed 12 years of service
e Most of the employees have less than 7 years of service
Observations on awards_won
histogram boxplot(data, "awards won")
¥
' ' awards_won ' ' '
T T T T _—
0.0 02 04 06 0.8 10
awards_won

e Less than 1-2% have won an award

Observations on avg_training_score

histogram boxplot(data, "avg training score")

T
avg_training_score

5000 A

4000 4

3000

Count

2000

1000

70
avg_training_score

e The data is concentrated betwee 45 and 85 score

function to create labeled barplots

def labeled barplot(data, feature, perc=True, n=None):

Barplot with percentage at the top

data: dataframe

feature: dataframe column

perc: whether to display percentages instead of count (default is False)

n: displays the top n category levels (default is None, i.e., display all levels)

total len(data[feature]) # length of the column
count = data[feature].nunique()
if n is None:
plt.figure(figsize=(count + 1, 5))
else:
plt.figure(figsize=(n + 1, 5))

plt.xticks(rotation=90, fontsize=15)
ax = sns.countplot(
data=data,
x=feature,
palette="Paired",
order=data[feature].value counts().index[:n].sort values(),

for p in ax.patches:
if perc == True:
label = "{:.1f}%".format(
100 * p.get height() / total
) # percentage of each class of the category
else:
label = p.get height() # count of each level of the category

X
y

p.get_x() + p.get_width() / 2 # width of the plot
p.get height() # height of the plot

ax.annotate(

label,

(x, y),

ha="center",

va="center",

size=12,

xytext=(0, 5),

textcoords="offset points",
) # annotate the percentage

plt.show() # show the plot

Observations on Department

labeled barplot(data, "department")

12000 4 20.7%

] 13.0%
6000 {1 oggo;

4000

4.4%
2000
1.8%
D T T T T T
wn — W — o =
5= S QI: g c c % = o
= = @ = e r E= i=]
=] | = £ [=}
© c © 1] = c
T [t = =
é Q = [1s] =
s B = @
'—
& %]
w0
L
i)
w
department

e The majority of employees belong to Sales & Marketing, Operations, Procurement and Technology.
Observations on region

labeled barplot(data, "region")

1

region_18

e Region 2, 7 and 22 are highly populated

Observations on Education

labeled barplot(data, "education")

66.9%
35000
30000
25000
=
S 20000 4
8
15000 - 27.2%
10000 4
5000 4
1 5%
pa__m I 1§
wn = 8]
bl E :O,
2 = =)
QU = (]
= [=]
i g 2
faa] W o
= @
o i
[i1] 1]
23] =
education

e Most employees have a bachelors degree with 66%

Observations on Gender

labeled barplot(data, "gender")

40000 4

35000

30000 4

25000

count

20000 4

15000 A

10000 1

5000 A

n-

gender

e There are 70% male employees in JMD

Observations on Awards won

labeled_barplot(data, "awards won")

97.7%

50000

40000 1
£ 30000
3
g8

20000

10000 4

2 3%
ApEE———
(= —
awards_won

e The vast majority of employees have not won an award

Observations on Recruitment channel

labeled_barplot(data, "recruitment_channel")

55.6%
30000

25000
42 4%

20000 4

count

15000

10000 4

5000 1

other
referred
sourcing

recruitment_channel

e 55% of employees were recruited through "other" channels and 42% through sourcing

Observations on Length of service

labeled barplot(data, "length of service")

As mentioned high percent of the population has less than 7 years of service

Observations on promotion

labeled barplot(data, "is promoted")

50000 A e
40000 4
30000
E
=2
g8
20000 A
10000 4
8.5%
L
(=) —
is_promoted

e Only 8% of the employees have received a promotion
e This indicates an imbalance in the data.

Bivariate Analysis

plt.figure(figsize=(15, 7))

sns.heatmap(data.corr(), annot=True, vmin=-1, vmax=1l, fmt=".2f", cmap="Spectral")
plt.show()

no_of_trainings 0.01 004
age - 0.01 0.05
orevious vear ratina - 0.03 0.08

100

.02
0.75

0.02
- 050

016

a1

length_of_service - 0.06 -0.00
--0.25
awards_won - £.01
-0.50
avg_training_score - 0.04
-0.75
is_promoted - 0.02 016 .01 020 018
i i i i i i -1.00
i o o u = w a
= E £ = g g o
£ B g o' 7 2
‘= ! ' T l:!lI e
i-] o P @ E =4
5! = 2 g £ '
. = - S -
g 2 2]
= o 2

e Length of service and age show a bit of correlation.
e All other features seem to be independent

function to plot stacked bar chart

def stacked barplot(data, predictor, target):

Print the category counts and plot a stacked bar chart

data: dataframe

predictor: independent variable

target: target variable

count = data[predictor].nunique()

sorter = data[target].value counts().index[-1]

tabl = pd.crosstab(datal[predictor], data[target], margins=True).sort values(
by=sorter, ascending=False

)

print(tabl)

print("-" * 120)

tab = pd.crosstab(data[predictor], datal[target], normalize="index").sort values(
by=sorter, ascending=False

)

tab.plot(kind="bar", stacked=True, figsize=(count + 1, 5))

plt.legend(
loc="1lower left", frameon=False,

)

plt.legend(loc="upper left", bbox to anchor=(1, 1))

plt.show()

Promoted vs Gender

stacked barplot(data, "gender", "is promoted")

is promoted 0 1 All

gender

All 50140 4668 54808

m 35295 3201 38496

f 14845 1467 16312

10 1 -
-]

0.8 1

0.6

0.4 4

0z

00

gender

e There's no difference when female/male(s) are being promoted

Promoted vs Education

stacked barplot(data, "is promoted", "education")
education Bachelor's Below Secondary Master's & above All
is promoted
All 36669 805 14925 52399
0 33661 738 13454 47853
1 3008 67 1471 4546
10 B Bachelor's
mmm Below Secondary
mm Master's & above
08
06
04
02
00
=] —
is_promoted

e Employees with a masters degree or above seem to have a higher edge when it comes to promotion.
Promoted vs Department

stacked barplot(data, "department", "is promoted")

is_promoted 0 1 All
department

All 50140 4668 54808
Sales & Marketing 15627 1213 16840
Operations 10325 1023 11348
Technology 6370 768 7138
Procurement 6450 688 7138
Analytics 4840 512 5352
Finance 2330 206 2536
HR 2282 136 2418
R&D 930 69 999
Legal 986 53 1039

10 A L]
LBl

08 1

0.6

04

0z

0.0
3 7
2

ics
ing

Operations
Finance
Legal

Technology
Pracurement
Analyt
Sales & Market

department

e Technology, Procurement, Analytics and Operations employees seem to be promoted more than employees in other departments

Promoted vs awards won

stacked barplot(data, "awards won", "is promoted")

is promoted 0 1 All

awards won

All 50140 4668 54808

0 49429 4109 53538

1 711 559 1270

10]
-1

0.8 1

0.6

0.4

02

00

— =]
awards_won

e |tis evient that if you have won an award at JMD there is a high likelihood of promotion

Promoted vs Length of service

stacked barplot(data, "length of service", "is promoted")
is promoted 0 1 All

length of service

All 50140 4668 54808

3 6424 609 7033

4 6238 598 6836
2 6089 595 6684
5 5357 475 5832
7 5087 464 5551
6 4333 401 4734
1 4170 377 4547
8 2614 269 2883

9 2400 229 2629
10 1989 204 2193
11 820 96 916
12 731 63 794

13 633 54 687

550
507
297
520
406
367
118

HNNNWDRD
NoOoOuUuo ONEF W

OO OOOOHFHHFNNNWRMO

593
548
329
549
432
392
128

e The higher the years of service the more likely that the employee will be promoted

Promoted vs Region

stacked barplot(data, "region", "is promoted")

is promoted

region
All
region 2
region 22
region_7
region_4
region 13
region 15
region 28
region 26
region_23
region_27
region 31
region 17
region 25
region 16
region_11
region_14
region 30
region 1
region 19
region 8
region_10
region 20
region 29
region 32
region 3
region 5
region_12
region 6
region 24
region 21
region 33
region 34
region 9
region 18

0 1 All
50140 4668 54808
11354 989 12343

5694 734 6428
4327 516 4843
1457 246 1703
2418 230 2648
2586 222 2808
1164 154 1318
2117 143 2260
1038 137 1175
1528 131 1659
1825 110 1935
687 109 796
716 103 819
1363 102 1465
1241 74 1315
765 62 827
598 59 657
552 58 610
821 53 874
602 53 655
597 51 648
801 49 850
951 43 994
905 40 945
309 37 346
731 35 766
467 33 500
658 32 690
490 18 508
393 18 411
259 10 269
284 8 292
412 8 420
30 1 31

e There are several regions where promotion is higher

Promoted vs Previous year rating

stacked barplot(data, "previous year rating", "is promoted")
is promoted 0 1 All
previous year rating

All 46355 4329 50684

5.0 9820 1921 11741

0 17263 1355 18618
0 9093 784 9877
.0 4044 181 4225
0 6135 88 6223

10 - - 0
1
08
06
0.4 1
0.2 1
0.0 -
=] =] = =
A = Pl ~ —

previous_year_rating

o As expected the higher the rating from last year the better opportunites for promotion

Function to plot distributions

def distribution plot wrt target(data, predictor, target):
fig, axs = plt.subplots(2, 2, figsize=(12, 10))
target uniq = data[target].unique()

axs[0, 0].set title("Distribution of target for target=" + str(target uniq[0]))
sns.histplot(

data=data[data[target] == target uniq[0O]],

x=predictor,

kde=True,

ax=axs[0, 0],

color="teal",

)

axs[0, 1].set title("Distribution of target for target=" + str(target uniq[1]))
sns.histplot(
data=data[data[target] == target uniq[1]],

x=predictor,
kde=True,
ax=axs[0, 1],
color="orange",

)

axs[1l, 0].set title("Boxplot w.r.t target")
sns.boxplot(data=data, x=target, y=predictor, ax=axs[l, 0], palette="gist rainbow")

axs[1l, 1].set title("Boxplot (without outliers) w.r.t target")
sns.boxplot (

data=data,

x=target,

y=predictor,

ax=axs[1l, 1],

showfliers=False,

palette="gist rainbow",

)

plt.tight layout()
plt.show()

Promoted vs Age

distribution plot wrt target(data, "age", "is promoted")

Distribution of target for target=0 Distribution of target for target=1
3500
T,
300 o (D
3000 A M Ll
500 1 509 Z
2000 2007 |
S E | I
=] T =l | K
8 (8
1500 - ’ 150 4 T K
||
N [
1000 100 A /
\ /
500 4 50 -
0- 0 T T T T T
20 25 30 35 40 45 50 55 60 20 25 30 k-] 40 45 50
age age
Boxplot w.rt target Boxplot (without outliers) w.rt target
B0 =1
55 ¥ 50 A
50 45 -
45
B 40
35 1
310 1
25 =
20 1 20 A
0 1 0 1
is_promated is_promaoted

e There's a slight difference in age for employees not promoted vs promoted.
Promoted vs Length of service

distribution plot wrt target(data, "length of service", "is promoted")

Distribution of target for target=0 Distribution of target for target=1

600 =Ml A
G000
500 A
5000 A 1
400
4000 4
E E
3 3
S 3000 | g 300 i
2000 4 200 1
Tt
h
1000 1 A 100 A
oL 11T TE VORI BN | 11111133 PP
] 5 10 15 20 25 30 35 o 5 10 15 20 25 30
length_of service length_of_service
Boxplot w.rt target Boxplot (without outliers) w.r.t target
+
1 ‘ 12 1
L]
m -
] o1
Ly 251 . u
= =
= B
Ban ;
l:II I:'II
g £ 61
(= 15 4 (=
o ' z
10 1 4 -
5 - E 2 1
D -
T T T T
0 1 0 1
is_promoted is_promoted
e Tenure has little impact on promotion.
cols = data[["length of service", "previous year rating",]].columns.tolist()

plt.figure(figsize=(12, 10))
for i, variable in enumerate(cols):
plt.subplot(3, 3, i + 1)
sns.lineplot(data["age"], data[variable], hue=data["gender"], ci=0)
plt.tight layout()
plt.title(variable)

plt.show()
length_of service previous_year_rating
16
gender | gender
14—t 51 ¢
12 4 —m 341 —_—m

length_of service
o
previous_year_rating
]
%]

5
ER
4.
301
2_
T T T T T T T T T T
20 30 40 50 &0 20 30 40 50 B0
age age

¢ |t seems that age and gender follow very closely when it comes to years of service.
¢ From age 30-50 females seem to do better during previous year rating

Percentage of outliers, in each column of the data, using IQR.

Q1
Q3

data.quantile(0.25) # To find the 25th percentile and 75th percentile.
data.quantile(0.75)

IQR = Q3 - Q1 # Inter Quantile Range (75th perentile - 25th percentile)

lower = (

Q1 - 1.5 * IQR
) # Finding lower and upper bounds for all values. All values outside these bounds are outliers
upper = Q3 + 1.5 * IQR

(data.select dtypes(include=["float64", "int64"]) < lower)
| (data.select dtypes(include=["float64", "int64"]) > upper)
).sum() / len(data) * 100

no_of trainings 19.030
age 2.618
previous year rating 11.354
length of service 6.366
awards_won 2.317
avg training score 0.000
is promoted 8.517

dtype: float64

e There are some high percentage of outliers when it comes to no_of _trainings and previous_year_rating. The outliers are typical and will
not be treated for this example

Missing value imputation

e We will impute missing values in all 3 columns (education, previous_year_rating and avg_training_score using mode)

datal = data.copy()

datal.isna().sum()

department 0
region 0
education 2409
gender 0
recruitment_channel 0
no of trainings 0
age 0
previous year rating 4124
length of service 0
awards_won 0
avg training score 2560
is promoted 0

dtype: int64

imputer = SimpleImputer(strategy="most frequent")

datal.drop(["is promoted"], axis=1)
datal["is promoted"]

>
nn

Splitting data into training, validation and test set:
first we split data into 2 parts, say temporary and test

X temp, X test, y temp, y test = train test split(
X, y, test size=0.2, random state=1, stratify=y

then we split the temporary set into train and validation

X train, X val, y train, y val = train test split(

X temp, y temp, test size=0.25, random state=1, stratify=y temp
)
print(X train.shape, X val.shape, X test.shape)

(32884, 11) (10962, 11) (10962, 11)

reqd col for impute = ["education", "previous year rating", "avg training score"]

Fit and transform the train data
X train[reqd col for impute] = imputer.fit transform(X train[reqd col for imputel])

Transform the validation data
X vall[reqd col for impute] = imputer.transform(X val[reqd col for imputel])

Transform the test data
X test[reqd col for impute] = imputer.transform(X test[reqd col for impute])

Checking that no column has missing values in train or test sets
print(X train.isna().sum())

print("-" * 30)

print(X val.isna().sum())

print("-" * 30)

print(X test.isna().sum())

department
region
education
gender
recruitment channel
no of trainings
age
previous year rating
length_of_service
awards_won
avg training score
dtype: int64
department 0
region 0
education 0
gender 0
recruitment channel 0
no of trainings 0

0

0

0

0

0

[cNoNoNoNoNoNoNoNoNoNO]

age

previous year rating
length of service

awards won

avg training score

dtype: int64

department

region

education

gender
recruitment_channel
no of trainings

age
previous year rating
length of service
awards_won

avg training score
dtype: int64

[cNoNoNoNoNoNoNoNoNoNo)

e All missing values have been treated.

cols = X train.select dtypes(include=["object", "category"])
for i in cols.columns:

print(X train[i].value counts())
print("*" * 30)

Sales & Marketing 9989

Operations 6746
Technology 4383
Procurement 4330
Analytics 3173
Finance 1570
HR 1482
R&D 613
Legal 598

Name: department, dtype: int64
Sk 3k 5k ok 3K >k Sk >k 5k Sk >k ok kK ok 3k >k 5k sk >k ok kK ok >k Kk kok ok

region 2 7351
region 22 3867
region_7 2973

region_15 1706
region 13 1584
region 26 1344
region 31 1132

region 4 987
region 27 983
region 16 893
region 11 799
region 28 780
region 23 688
region 29 601
region_32 577
region 19 533
region 20 525
region 14 510
region 17 498
region 25 480
region_5 442
region 8 411
region 6 408
region 10 407
region 30 396
region 1 368
region 12 312
region 24 306
region 9 242
region 21 230
region 3 212
region_34 167
region 33 155
region 18 17

Name: region, dtype: int64
3k 5k >k 3k 5k >k 3k ok >k Sk ok >k K ok >k Sk ok >k sk ok >k kok >k kok >k kok >k

Bachelor's 23562
Master's & above 8840
Below Secondary 482

Name: education, dtype: int64
3k 3k 3k 3k 3k 3k ok ok 5k 5k ok ok ok 5k ok ok ok K K K K K K Kk Kk k kK
m 22989

f 9895

Name: gender, dtype: int64

>k 3k 3k 3k 3k 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok K >k Kk >k >k >k >k >k >k

other 18260
sourcing 13942
referred 682

Name: recruitment channel, dtype: int64
Sk 3k 5k ok >k >k Sk >k ok Sk >k ok Sk >k ok Sk >k 5k 3k >k ok kK ok >k ok Sk kok ok

cols = X val.select dtypes(include=["object", "category"])
for i in cols.columns:

print(X val[i].value counts())

print("*" * 30)

Sales & Marketing 3454

Operations 2315
Procurement 1392
Technology 1364
Analytics 1072
Finance 485
HR 456
Legal 227
R&D 197

Name: department, dtype: int64

>k 3k 3k 3k 3k Sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok K >k >k >k >k >k >k >k >k >k

region 2 2478
region 22 1262
region_7 915
region 15 557
region 13 533
region 26 466
region 31 431
region 27 358
region 4 351
region 16 288
region 11 262
region 28 252
region 23 248
region_32 201
region_29 201
region 19 176
region 20 171
region 14 167
region 25 156
region 5 154
region_17 149
region 6 138
region 1 133
region 30 132
region_8 126
region_10 119
region 24 106
region 21 93
region 12 86
region 9 83
region 3 62
region 33 60
region 34 44
region 18 4

Name: region, dtype: int64
3k 5k >k 3k 5k >k 3k 5k >k 3k ok >k 5k ok >k Sk ok >k sk ok >k kok >k kok >k kok >k

Bachelor's 7744
Master's & above 3053
Below Secondary 165

Name: education, dtype: int64
3k ok >k 3k 5k >k 3k ok >k Sk ok >k K k >k Sk ok >k Skok >k kok >k kok >k kok >k
m 7809

f 3153

Name: gender, dtype: int64

3k 3k 3k 3k ok Sk Sk ok ok ok ok ok ok ok ok ok ok K K K K K K Kk Kk k kK

other 6073
sourcing 4666
referred 223

Name: recruitment channel, dtype: int64
Sk >k 5K ok >k 5k Sk >k 5k Sk >k ok kK ok 3k >k 5k 3k >k ok kK ok >k Kk kR ok

cols = X test.select dtypes(include=["object", "category"])
for i in cols.columns:

print(X train[i].value counts())

print("*" * 30)

Sales & Marketing 9989

Operations 6746
Technology 4383
Procurement 4330
Analytics 3173
Finance 1570
HR 1482
R&D 613
Legal 598

Name: department, dtype: int64
3k 5k >k 3k ok >k 3k ok >k Sk ok >k K k >k Sk ok >k sk ok >k kok >k kok >k kok >k

region 2 7351
region 22 3867
region 7 2973

region 15 1706
region 13 1584
region_26 1344
region 31 1132

region 4 987
region 27 983
region 16 893
region 11 799

region 28 780

region 23 688

region 29 601
region 32 577
region 19 533
region 20 525
region 14 510
region 17 498
region 25 480
region_5 442
region 8 411
region 6 408
region 10 407
region 30 396
region 1 368
region_12 312
region 24 306
region 9 242
region 21 230
region 3 212
region 34 167
region 33 155
region_18 17

Name: region, dtype: int64
3k ok >k 3k ok >k Sk ok >k sk ok >k Sk ok >k sk ok >k sk ok >k sk ok >k kok >k skok >k

Bachelor's 23562
Master's & above 8840
Below Secondary 482

Name: education, dtype: int64
Sk 3k 5K ok 3K >k 3k >k 5k 3k >k ok kK ok 3k >k 5k 3k Kk kK 5k kK Sk koK ok
m 22989

f 9895

Name: gender, dtype: int64

>k 3k 3k 3k 3k ok sk ok ok ok ok ok ok sk sk ok ok sk sk ok >k >k >k >k >k >k >k ok ok >k

other 18260
sourcing 13942
referred 682

Name: recruitment channel, dtype: int64
Sk >k >k ok >k ok Sk >k ok Sk >k ok Sk 3k ok Sk >k ok sk sk ok Sk sk ok sk ok ok oskok ok

Encoding categorical variables

X train = pd.get dummies(X train, drop first=True)
X val = pd.get dummies(X val, drop first=True)

X test = pd.get dummies(X test, drop first=True)
print(X train.shape, X val.shape, X test.shape)

(32884, 52) (10962, 52) (10962, 52)

e After encoding there are 52 columns.

X train.head()

no_of_trainings age previous_year_rating length_of_service awards_won avg_training_score department_Finance department_HR dep

24986 2 34 3.000 4 0 85.000 0 0
42259 1 35 3.000 10 0 65.000 0 0
51748 2 28 4.000 3 0 50.000 0 0
48031 1 38 1.000 9 0 51.000 0 0
36827 1 39 5.000 12 0 88.000 0 0

Building the model

Model evaluation criterion

Model can make wrong predictions as:

1. Predicting an employee will be promoted and the employee is not promoted
2. Predicting an employee will not be promoted and the employee is promoted

Which case is more important?

¢ In my opinion both are valuable pieces of information but it would be interesting to understand the Recall of the problem when the
employee is not expected to be promoted but it is promoted

How to reduce this loss i.e need to reduce False Negatives?

e Use Recall to be maximized, greater the Recall higher the chances of minimizing false negatives. Hence, the focus should be on
increasing Recall or minimizing the false negatives or in other words identifying the true positives(i.e. Class 1).

Functions to calculate different metrics and confusion matrix

defining a function to compute different metrics to check performance of a classification model built using ski
def model performance classification sklearn(model, predictors, target):

Function to compute different metrics to check classification model performance

model: classifier
predictors: independent variables
target: dependent variable

predicting using the independent variables
pred = model.predict(predictors)

acc = accuracy score(target, pred) # to compute Accuracy

recall = recall score(target, pred) # to compute Recall
precision = precision_score(target, pred) # to compute Precision
fl = f1 score(target, pred) # to compute Fl-score

creating a dataframe of metrics

df perf = pd.DataFrame(
{"Accuracy": acc, "Recall": recall, "Precision": precision, "F1": f1,},
index=[0],

)

return df_perf

def confusion matrix sklearn(model, predictors, target):

To plot the confusion matrix with percentages

model: classifier
predictors: independent variables
target: dependent variable
y pred = model.predict(predictors)
cm = confusion matrix(target, y pred)
labels = np.asarray(
[
["{0:0.0f}".format(item) + "\n{0:.2%}".format(item / cm.flatten().sum())]
for item in cm.flatten()
1
) .reshape(2, 2)

plt.figure(figsize=(6, 4))
sns.heatmap(cm, annot=labels, fmt="")
plt.ylabel("True label")
plt.xlabel("Predicted label")

Model with original data

models = [] # Empty list to store all the models

Appending models into the list

models.append(("Logistic regression", LogisticRegression(random state=1)))
models.append(("Bagging", BaggingClassifier(random state=1)))
models.append(("Random forest", RandomForestClassifier(random state=1)))
models.append(("GBM", GradientBoostingClassifier(random state=1)))
models.append(("Adaboost", AdaBoostClassifier(random state=1)))

models.append(("Xgboost", XGBClassifier(random state=1, eval metric="logloss")))

models.append(("dtree", DecisionTreeClassifier(random state=1)))

resultsl = [] # Empty list to store all model's CV scores
names = [] # Empty list to store name of the models

loop through all models to get the mean cross validated score
print("\n" "Cross-Validation Performance:" "\n")

for name, model in models:
scoring = "recall"
kfold = StratifiedKFold(
n splits=5, shuffle=True, random state=1
) # Setting number of splits equal to 5
cv_result = cross val score(
estimator=model, X=X train, y=y train, scoring=scoring, cv=kfold
)
resultsl.append(cv result)
names.append(name)
print("{}: {}".format(name, cv result.mean() * 100))

print("\n" "Validation Performance:" "\n")

for name, model in models:
model.fit(X train, y train)
scores = recall score(y val, model.predict(X val))
print("{}: {}".format(name, scores))

Cross-Validation Performance:

Logistic regression: 10.857142857142858
Bagging: 33.357142857142854

Random forest: 25.178571428571427

GBM: 28.92857142857143

Adaboost: 16.392857142857142

Xgboost: 33.0

dtree: 38.857142857142854

Validation Performance:

Logistic regression: 0.12098501070663811
Bagging: 0.33190578158458245

Random forest: 0.25910064239828695

GBM: 0.2826552462526767

Adaboost: 0.16059957173447537

Xgboost: 0.33190578158458245

dtree: 0.3854389721627409

Plotting boxplots for CV scores of all models defined above
fig = plt.figure(figsize=(10, 7))

fig.suptitle("Algorithm Comparison")
ax = fig.add subplot(111)

plt.boxplot(resultsl)
ax.set xticklabels(names)

plt.show()

Algorithm Comparison

040

0.30 A _J_ L

020 4

010

]

Logistic rlegressiun Bagé_; ing Ran |:Ior||'| forest GBIM Pda.bloost XQbémst cl:rlee

Performance comparison

o dtree has the best performance followed by bagging

Models with Oversampled data

print("Before Oversampling, counts of label 'Yes': {}".format(sum(y train == 1)))
print("Before Oversampling, counts of label 'No': {} \n".format(sum(y train == 0)))
sm = SMOTE(

sampling strategy=1, k neighbors=5, random state=1
) # Synthetic Minority Over Sampling Technique
X train over, y train over = sm.fit resample(X train, y train)

print("After Oversampling, counts of label 'Yes': {}".format(sum(y train over == 1)))
print("After Oversampling, counts of label 'No': {} \n".format(sum(y train over == 0)))

print("After Oversampling, the shape of train X: {}".format(X train over.shape))
print("After Oversampling, the shape of train y: {} \n".format(y train over.shape))

Before Oversampling, counts of label 'Yes': 2800
Before Oversampling, counts of label 'No': 30084

After Oversampling, counts of label 'Yes': 30084
After Oversampling, counts of label 'No': 30084

After Oversampling, the shape of train X: (60168, 52)
After Oversampling, the shape of train y: (60168,)

%%time
models = [] # Empty list to store all the models

Appending models into the list

models.append(("Logistic regression", LogisticRegression(random state=1)))
models.append(("Bagging", BaggingClassifier(random state=1)))
models.append(("Random forest", RandomForestClassifier(random state=1)))
models.append(("GBM", GradientBoostingClassifier(random state=1)))
models.append(("Adaboost", AdaBoostClassifier(random state=1)))

models.append(("Xgboost", XGBClassifier(random state=1, eval metric="logloss")))
models.append(("dtree", DecisionTreeClassifier(random state=1)))

results2 = [] # Empty list to store all model's CV scores
names = [] # Empty list to store name of the models

loop through all models to get the mean cross validated score
print("\n" "Cross-Validation Performance:" "\n")

for name, model in models:
scoring = "recall"
kfold = StratifiedKFold(
n splits=5, shuffle=True, random state=1
) # Setting number of splits equal to 5
cv_result = cross val score(
estimator=model, X=X train over, y=y train over, scoring=scoring, cv=kfold, n jobs=-1
)
results2.append(cv_result)
names.append (name)
print("{}: {}".format(name, cv_result.mean() * 100))

print("\n" "Validation Performance:" "\n")
for name, model in models:
model.fit(X_ train_over, y train_over)

scores = recall score(y val, model.predict(X val))
print("{}: {}".format(name, scores))

Cross-Validation Performance:

Logistic regression: 83.07407160209195
Bagging: 93.46164921905664

Random forest: 93.90373385779299

GBM: 85.76986658368664

Adaboost: 87.30554541388052

Xgboost: 92.10876585490048

dtree: 93.99348731342756

Validation Performance:

Logistic regression: 0.29014989293361887

Bagging: 0.31156316916488225

Random forest: 0.29229122055674517

GBM: 0.37794432548179874

Adaboost: 0.3222698072805139

Xgboost: 0.3747323340471092

dtree: 0.3747323340471092

CPU times: user 40.4 s, sys: 5.32 s, total: 45.7 s
Wall time: 45.2 s

Plotting boxplots for CV scores of all models defined above
fig = plt.figure(figsize=(10, 7))

fig.suptitle("Algorithm Comparison")
ax = fig.add subplot(111)

plt.boxplot(results2)
ax.set xticklabels(names)

plt.show()
Algorithm Comparison
o
0.94 i S —
— °

0.92 =

0.90 -

088 -

=
o
o
086 -
o
0.84 -
0.52 - o
Logistic rlegressinn Baglging Randonl'l forest GBIM .ﬂdabloost Kgbloost cl:rlee

Performance comparison

e Random forest has the best performance followed by bagging

e Performance of all models in the validation set is poor
Models with Undersampled data

rus = RandomUnderSampler(random state=1)

X train un, y train un = rus.fit resample(X train, y train)

print("Before Under Sampling, counts of label 'Yes': {}".format(sum(y train == 1)))

print("Before Under Sampling, counts of label 'No': {} \n".format(sum(y train == 0)))

print("After Under Sampling, counts of label 'Yes': {}".format(sum(y train un == 1)))
print("After Under Sampling, counts of label 'No': {} \n".format(sum(y train un == 0)))

print("After Under Sampling, the shape of train X: {}".format(X train_un.shape))
print("After Under Sampling, the shape of train y: {} \n".format(y train un.shape))

Before Under Sampling, counts of label 'Yes': 2800
Before Under Sampling, counts of label 'No': 30084

After Under Sampling, counts of label 'Yes': 2800
After Under Sampling, counts of label 'No': 2800

After Under Sampling, the shape of train X: (5600, 52)
After Under Sampling, the shape of train y: (5600,)

models = [] # Empty list to store all the models

Appending models into the list

models.append(("Logistic regression", LogisticRegression(random state=1, max iter=200)))
models.append(("Bagging", BaggingClassifier(random state=1)))

models.append(("Random forest", RandomForestClassifier(random state=1)))
models.append(("GBM", GradientBoostingClassifier(random state=1)))

models.append(("Adaboost", AdaBoostClassifier(random state=1)))

models.append(("Xgboost", XGBClassifier(random state=1, eval metric="logloss")))
models.append(("dtree", DecisionTreeClassifier(random state=1)))

results3 = [] # Empty list to store all model's CV scores
names = []1 # Empty list to store name of the models

loop through all models to get the mean cross validated score
print("\n" "Cross-Validation Performance:" "\n")

for name, model in models:
scoring = "recall"
kfold = StratifiedKFold(
n_splits=5, shuffle=True, random state=1
) # Setting number of splits equal to 5
cv_result = cross val score(
estimator=model, X=X train un, y=y train un, scoring=scoring, cv=kfold
)
results3.append(cv result)
names.append (name)
print("{}: {}".format(name, cv_result.mean() * 100))

print("\n" "Validation Performance:" "\n")

for name, model in models:
model.fit(X train un, y train un)
scores = recall score(y val, model.predict(X val))
print("{}: {}".format(name, scores))

Cross-Validation Performance:

Logistic regression: 67.35714285714286
Bagging: 62.67857142857143

Random forest: 67.14285714285715

GBM: 61.10714285714286

Adaboost: 66.25

Xgboost: 64.75000000000001

dtree: 65.53571428571429

Validation Performance:

Logistic regression: 0.6852248394004282
Bagging: 0.6124197002141327

Random forest: 0.6702355460385439

GBM: 0.6231263383297645

Adaboost: 0.6702355460385439

Xgboost: 0.6541755888650964

dtree: 0.6413276231263383

Plotting boxplots for CV scores of all models defined above
fig = plt.figure(figsize=(10, 7))

fig.suptitle("Algorithm Comparison")
ax = fig.add subplot(111)

plt.boxplot(results3)
ax.set xticklabels(names)

plt.show()

Algonthm Comparisen

070

068 :l T

064 4
==
062 4
Q
060 4 o
T T T T T T T
Logistic regression Bagging Random forest GEM Adaboost ¥gboost diree

Performance comparison

e Logistic Regression & random forest are performing equally well as per the validation performance
o |t would seem that undersampling is not overfitting the data like in the oversampling case

Which models should be tuned?

e There is a mix and match of models and none are consistent. There is dtree, bagging, random forest and logistic regression

e Tune these 4 models (adding an extra one since the results are ambiguous).

e We will tune these 4 models using undersampled data.

e Sometimes models might overfit after undersampling and oversampling, so it's better to tune models with both undersampled data and
original data

Tuning dtree
Tuning with Undersampled data

%%time

defining model
Model = DecisionTreeClassifier(criterion = 'gini', random state=1)

#Parameter grid to pass in RandomSearchCV
param_grid={'max depth': np.arange(1,10),
'min_samples leaf': [1, 2, 5, 7, 10,15,20],
'max_leaf nodes' : [2, 3, 5, 10],
'min_impurity decrease': [0.001,0.01,0.1]
}

from sklearn import metrics

Type of scoring used to compare parameter combinations
scorer = metrics.make scorer(metrics.recall score)

#Calling RandomizedSearchCV
randomized cv = RandomizedSearchCV(estimator=Model, param distributions=param grid, n iter=50, n jobs = -1, scori

#Fitting parameters in RandomizedSearchCV
randomized cv.fit(X train_un,y train_un)

print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score))

Best parameters are {'min samples leaf': 2, 'min_impurity decrease': 0.001, 'max_leaf nodes': 10, 'max depth': 8}
with CV score=0.5921428571428571:

CPU times: user 267 ms, sys: 73.1 ms, total: 340 ms

Wall time: 353 ms

%%time

defining model
Model = DecisionTreeClassifier(criterion = 'gini', random state=1)

#Parameter grid to pass in RandomSearchCV

param grid={'max depth': np.arange(1,10),
'min_samples leaf': [1, 2, 5, 7, 10,15,20],
'max_leaf nodes' : [2, 3, 5, 10],
‘min_impurity decrease': [0.001,0.01,0.1]

from sklearn import metrics

Type of scoring used to compare parameter combinations
scorer = metrics.make scorer(metrics.recall score)

#Calling RandomizedSearchCV
randomized cv = RandomizedSearchCV(estimator=Model, param distributions=param grid, n iter=50, n jobs = -1, scor:

#Fitting parameters in RandomizedSearchCV
randomized cv.fit(X train un,y train un)

print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score))

Best parameters are {'min samples leaf': 2, 'min impurity decrease': 0.001, 'max leaf nodes': 10, 'max depth': 8}
with CV score=0.5921428571428571:

CPU times: user 195 ms, sys: 24.7 ms, total: 220 ms

Wall time: 386 ms

%%time

tuned dtreel = DecisionTreeClassifier(
random state=1,
min _samples leaf=2,
min impurity decrease=0.001,
max_leaf nodes=10,
max_depth=8,

)

tuned dtreel.fit(X train un, y train un)

CPU times: user 8.63 ms, sys: 689 us, total: 9.32 ms
Wall time: 8.55 ms

DecisionTreeClassifier(max_depth=8, max leaf nodes=10,
min impurity decrease=0.001, min samples leaf=2,
random state=1)

Checking model's performance on train set
dtreel train = model performance classification sklearn(
tuned_dtreel, X train_un, y train_un

)

dtreel train

Accuracy Recall Precision F1

0 0.688 0.591 0.734 0.655

Checking model's performance on validation set
dtreel val = model performance classification_ sklearn(tuned dtreel, X val, y val)
dtreel val

Accuracy Recall Precision F1

0 0.770 0.596 0.207 0.307

Tuning with Original data

%%time

defining model
Model = DecisionTreeClassifier(criterion = 'gini', random state=1)

#Parameter grid to pass in RandomSearchCV

param grid={'max depth': np.arange(1,10),
'min_samples leaf': [1, 2, 5, 7, 10,15,20],
'max_leaf nodes' : [2, 3, 5, 10],
‘min_impurity decrease': [0.001,0.01,0.1]

from sklearn import metrics

Type of scoring used to compare parameter combinations
scorer = metrics.make scorer(metrics.recall score)

#Calling RandomizedSearchCV

randomized cv = RandomizedSearchCV(estimator=Model, param distributions=param grid, n iter=50, n jobs = -1, scor:
#Fitting parameters in RandomizedSearchCV

randomized cv.fit(X train,y train)

print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score))

Best parameters are {'min_samples leaf': 2, 'min impurity decrease': 0.001, 'max leaf nodes': 10,

with CV score=0.15035714285714286:
CPU times: user 333 ms, sys: 96.1 ms, total: 429 ms
Wall time: 1.24 s

tuned_dtree2 = DecisionTreeClassifier(
random state=1,
min_samples_leaf=2,
min impurity decrease=0.001,
max_leaf nodes=10,
max_depth=8,
)
tuned dtree2.fit(X_train_un, y train_un)
tuned dtree2.fit(X train, y train)

DecisionTreeClassifier(max depth=8, max leaf nodes=10,
min_impurity decrease=0.001, min_samples leaf=2,
random state=1)

Checking model's performance on training set

dtree2 train = model performance classification sklearn(tuned dtree2, X train, y train)

dtree2 train

Accuracy Recall Precision F1

0 0.925 0.141 0.861 0.242

Checking model's performance on validation set

dtree2 val = model performance classification sklearn(tuned dtree2, X val, y val)

dtree2 val
Accuracy Recall Precision F1
0 0.924 0.136 0.836 0.234

Tuning Logistic Regression

Tuning with Undersampled data

'max_depth': 8}

%%time

defining model
Model = LogisticRegression(random state=1)

Parameter grid to pass in RandomSearchCV
param grid = {

'penalty': ['12'],'C':[0.001,.009,0.01,.09,1,5,10,25], 'solver':['newton-cg', 'lbfgs', 'liblinear']
}

Type of scoring used to compare parameter combinations
scorer = metrics.make scorer(metrics.recall score)

#Calling RandomizedSearchCV
randomized cv = RandomizedSearchCV(estimator=Model, param distributions=param grid, n jobs = -1, n iter=50, scor:

#Fitting parameters in RandomizedSearchCV
randomized cv.fit(X train un,y train un)

print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score))

Best parameters are {'solver': 'liblinear', 'penalty': '12', 'C': 0.009} with CV score=0.6875:
CPU times: user 196 ms, sys: 19 ms, total: 215 ms
Wall time: 1.83 s

%%time

defining model
Model = LogisticRegression(solver="liblinear", random state=1)

Parameter grid to pass in RandomSearchCV
param grid = {

'penalty': ['12'],'C':[0.001,.009,0.01,.09,1,5,10,25], 'solver': ['liblinear']
}

Type of scoring used to compare parameter combinations
scorer = metrics.make scorer(metrics.recall score)

#Calling RandomizedSearchCV
randomized cv = RandomizedSearchCV(estimator=Model, param distributions=param grid, n jobs = -1, n iter=50, scor:

#Fitting parameters in RandomizedSearchCV
randomized cv.fit(X train_un,y train_un)

print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score))

Best parameters are {'solver': 'liblinear', 'penalty': '12', 'C': 0.009} with CV score=0.6875:
CPU times: user 60 ms, sys: 6.83 ms, total: 66.9 ms
Wall time: 214 ms

tuned logl = LogisticRegression(
random_state=1, penalty="12", C=0.009, solver="liblinear"
)

tuned logl.fit(X train un, y train un)

LogisticRegression(C=0.009, random state=1, solver='liblinear')

Checking model's performance on training set
logl train = model performance classification sklearn(
tuned logl, X train un, y train un

)

logl train
Accuracy Recall Precision F1
0 0.656 0.687 0.647 0.666

Checking model's performance on validation set
logl val = model performance classification sklearn(tuned logl, X val, y val)
logl val

Accuracy Recall Precision F1

0 0.639 0.678 0.148 0.242

Tuning with Original data

%%time

defining model
Model = LogisticRegression(random state=1)

Parameter grid to pass in RandomSearchCV

param grid = {
'penalty': ['12'],'C':[0.001,.009,0.01,.09,1,5,10,25], " 'solver': ['liblinear']

Type of scoring used to compare parameter combinations
scorer = metrics.make scorer(metrics.recall score)

#Calling RandomizedSearchCV
randomized cv = RandomizedSearchCV(estimator=Model, param distributions=param grid, n jobs = -1, n iter=50, scor:

#Fitting parameters in RandomizedSearchCV
randomized cv.fit(X train,y train)

print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score))
Best parameters are {'solver': 'liblinear', 'penalty': '12', 'C': 25} with CV score=0.26357142857142857:

CPU times: user 285 ms, sys: 209 ms, total: 494 ms
Wall time: 987 ms

tuned log2 = LogisticRegression(random state=1, penalty="12", C=25, solver="liblinear")
tuned log2.fit(X train, y train)

LogisticRegression(C=25, random state=1, solver='liblinear')

Checking model's performance on validation set
log2 val = model performance classification sklearn(tuned log2, X val, y val)

log2 val
Accuracy Recall Precision F1
0 0.937 0.283 0.943 0.435

Checking model's performance on training set
log2_train = model performance classification_sklearn(tuned_log2, X train, y train)

log2 train
Accuracy Recall Precision F1
0 0.937 0.269 0.954 0.420

Tuning Bagging
Tuning with Undersampled Data

%%time

#Creating pipeline
Model = BaggingClassifier(random state=1)

#Parameter grid to pass in RandomSearchCV
param grid = {

'n _estimators' : [100, 300, 500, 800, 1200],
#max depth = [5, 10, 15, 25, 30]
‘max_samples' : [5, 10, 25, 50, 100],
'max_features' : [1, 2, 5, 10, 13],
}

Type of scoring used to compare parameter combinations
scorer = metrics.make scorer(metrics.recall score)

#Calling RandomizedSearchCV
randomized cv = RandomizedSearchCV(estimator=Model, param distributions=param grid, n iter=50, scoring=scorer, c\

#Fitting parameters in RandomizedSearchCV
randomized cv.fit(X_train_un,y train_un)

print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score))

Best parameters are {'n_estimators': 500, 'max samples': 5, 'max features': 1} with CV score=0.7949999999999999:
CPU times: user 1.09 s, sys: 299 ms, total: 1.39 s
Wall time: 21.2 s

tuned bagl = BaggingClassifier(

random state=1, n estimators=500, max samples=5, max features=1,
)
tuned bagl.fit(X train un, y train un)

BaggingClassifier(max features=1, max samples=5, n_estimators=500,
random_state=1)

Checking model's performance on training set

bagl train = model performance classification sklearn(
tuned bagl, X train un, y train un

)

bagl train
Accuracy Recall Precision F1
0 0.548 0.840 0.530 0.650

Checking model's performance on validation set
bagl val = model performance classification sklearn(tuned bagl, X val, y val)

bagl val
Accuracy Recall Precision F1
0 0.321 0.849 0.098 0.176

Tuning with Original data

%%time

#defining model
Model = BaggingClassifier(random state=1)

#Parameter grid to pass in RandomSearchCV
param grid = {

'n _estimators' : [100, 300, 500, 800, 1200],
#max depth = [5, 10, 15, 25, 30]
‘max_samples' : [5, 10, 25, 50, 100],
'max_features' : [1, 2, 5, 10, 13],
}

Type of scoring used to compare parameter combinations
scorer = metrics.make scorer(metrics.recall score)

#Calling RandomizedSearchCV
randomized cv = RandomizedSearchCV(estimator=Model, param distributions=param grid, n iter=50, scoring=scorer, c\

#Fitting parameters in RandomizedSearchCV
randomized cv.fit(X_ train,y train)

print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score))

Best parameters are {'n estimators': 1200, 'max samples': 100, 'max features': 5} with CV score=0.0:
CPU times: user 2.85 s, sys: 278 ms, total: 3.13 s
Wall time: 43 s

tuned bag2 = BaggingClassifier(
random state=1, n estimators=1200, max samples=100, max features=5,

)
tuned_bag2.fit(X train, y train)

BaggingClassifier(max features=5, max samples=100, n estimators=1200,
random state=1)

Checking model's performance on training set
bag2 train = model performance classification sklearn(tuned bag2, X train, y train)

bag2 train
Accuracy Recall Precision F1
0 0.915 0.000 0.000 0.000

Checking model's performance on validation set
bag2 val = model performance classification sklearn(tuned bag2, X val, y val)

bag2 val
Accuracy Recall Precision F1
0 0.915 0.000 0.000 0.000

Tuning Random Forest
Tuning with Undersampled Data

%%time

#Creating pipeline
Model = RandomForestClassifier(random state=1)

#Parameter grid to pass in RandomSearchCV
param grid = {
'n_estimators' : [100, 300, 500, 800, 1200],

‘max_depth' : [5, 10, 15, 25, 30],
'min_samples split' :[2, 5, 10, 15, 100],
'min_samples leaf' : [1, 2, 5, 10]

}

Type of scoring used to compare parameter combinations
scorer = metrics.make scorer(metrics.recall score)

#Calling RandomizedSearchCV
randomized cv = RandomizedSearchCV(estimator=Model, param distributions=param grid, n iter=50, scoring=scorer, c\

#Fitting parameters in RandomizedSearchCV
randomized cv.fit(X train_un,y train_un)

print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score))

tuned forestl = RandomForestClassifier(
random state=1,
n_estimators=100,
min_samples_split=5,
min_samples leaf=2,
max_depth=30

)
tuned forestl.fit(X train un, y train un)

Checking model's performance on training set

forestl train = model performance classification sklearn(
tuned _forestl, X train un, y train_un

)

forestl train

Checking model's performance on validation set
forestl val = model performance classification_sklearn(tuned forestl, X val, y val)
forestl val

Tuning with Original data

%%time

#defining model
Model = RandomForestClassifier(random state=1)

#Parameter grid to pass in RandomSearchCV
param grid = {
'n_estimators' : [100, 300, 500, 800, 1200],

'max_depth' : [5, 10, 15, 25, 301,
'min_samples split' :[2, 5, 10, 15, 100],
'min_samples leaf' : [1, 2, 5, 10]

}

Type of scoring used to compare parameter combinations
scorer = metrics.make scorer(metrics.recall score)

#Calling RandomizedSearchCV
randomized cv = RandomizedSearchCV(estimator=Model, param distributions=param grid, n iter=50, scoring=scorer, c\

#Fitting parameters in RandomizedSearchCV
randomized cv.fit(X_ train,y train)

print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score))

tuned forest2 = RandomForestClassifier(
random_state=1,
n_estimators=300,
min samples split=2,
min_samples leaf=1,
max_depth=30

)

tuned_forest2.fit(X train_un, y train_un)

Checking model's performance on training set

forest2 train = model performance classification sklearn(
tuned forest2, X train un, y train un

)

forest2 train

Checking model's performance on validation set
forest2 val = model performance classification sklearn(tuned forest2, X val, y val)
forest2 val

Model Performance comparison

training performance comparison

models train comp df = pd.concat(
[
dtreel train.
dtree2 train.
logl train.T,
log2_train.T,
bagl train.T,
bag2 train.T,

— -

forestl train.T,
forest2 train.T
s
axis=1,
)
models train comp df.columns = [
"Decision Tree trained with Undersampled data",
"Decision Tree trained with Original data",
"Logistic Regression trained with Undersampled data",
"Logistic Regression trained with Original data",
"Bagging trained with Undersampled data",
"Bagging trained with Original data",
"Random forest trained with Undersampled data",
"Random forest trained with Original data"
]
print("Training performance comparison:")
models train comp df

Validation performance comparison

models train comp df = pd.concat(
[dtreel val.T, dtree2 val.T, logl val.T, log2 val.T, bagl val.T, bag2 val.T, forestl val.T, forest2 val.T],
axis=1,

)

models train comp df.columns = [
"Decision Tree trained with Undersampled data",
"Decision Tree trained with Original data",
"Logistic Regression trained with Undersampled data",
"Logistic Regression trained with Original data",
"Bagging trained with Undersampled data",
"Bagging trained with Original data",
"Random forest trained with Undersampled data",
"Random forest trained with Original data"]

print("Validation performance comparison:")
models train comp df

e Random Forest model trained with original data has generalised performance

Let's check the performance on test set
forest2 test = model performance classification sklearn(tuned forest2, X test, y test)
forest2 test

e The model has given generalised performance on test set.

feature names = X train.columns
importances = tuned forest2.feature importances
indices = np.argsort(importances)

plt.figure(figsize=(12, 12))

plt.title("Feature Importances")

plt.barh(range(len(indices)), importances[indices], color="violet", align="center")
plt.yticks(range(len(indices)), [feature names[i] for i in indices])
plt.xlabel("Relative Importance")

plt.show()

e Avg_training_score is the most important variable in predicting employee promotion followed by age, length_of_service,
previous_year_rating and awards_won

Final Pipelin/Model

creating a list of numerical variables
numerical features = [

'no_of trainings', 'age',
‘previous year rating', 'length of service',
'awards won', 'avg training score']

creating a transformer for numerical variables, which will apply simple imputer on the numerical variables
numeric transformer = Pipeline(steps=[("imputer", SimpleImputer(strategy="median"))])

creating a list of categorical variables

categorical features = ['department',
‘region', 'education', 'gender’,
'recruitment channel']

creating a transformer for categorical variables, which will first apply simple imputer and
#then do one hot encoding for categorical variables
categorical transformer = Pipeline(
steps=[
("imputer", SimpleImputer(strategy="most frequent")),
("onehot", OneHotEncoder(handle unknown="ignore")),
]
)

handle unknown = "ignore", allows model to handle any unknown category in the test data
combining categorical transformer and numerical transformer using a column transformer

preprocessor = ColumnTransformer(
transformers=[
("num", numeric transformer, numerical features),
("cat", categorical transformer, categorical features),
I
remainder="drop",

remainder = "drop" has been used, it will drop the variables that are not present in "numerical features"
and "categorical features"

Separating target variable and other variables
prediction.drop(columns="is promoted")
prediction["is promoted"]

< X #
nn

e pre-processing

employee ID are unique values and will not add value to the modeling
X.drop(["employee id"], axis=1, inplace=True)

e Using the best model random forest

Splitting the data into train and test sets
_train, X test, y train, y test = train test split(
X, Y, test size=0.30, random state=1, stratify=Y

X H

)
print(X train.shape, X test.shape)

Creating new pipeline with best parameters
model = Pipeline(
steps=[
("pre", preprocessor),
(
"RF",RandomForestClassifier(
random state=1,
n_estimators=300,
min_samples split=2,
min_samples_leaf=1,
max_depth=30

)
)5
]
)
Fit the model on training data
model.fit(X train, y train)

Key Insights:

Important Factors Influencing Promotion:

Average Training Score: Higher training scores significantly improve the likelihood of promotion. Previous Year Rating: Higher ratings in the
previous year positively correlate with promotions. Length of Service: Employees with longer service are more likely to be promoted. Awards
Won: Winning awards in the previous year significantly increases the chances of promotion. Age: There is a noticeable trend where certain
age groups have higher promotion rates. Departmental Influence:

Employees in the Technology, Procurement, and Analytics departments have a higher likelihood of being promoted compared to other
departments. Gender and Promotion:

There is no significant difference in promotion rates between male and female employees, indicating gender neutrality in promotions.
Education Level:

Employees with a Master's degree or higher have a slightly better chance of being promoted compared to those with a Bachelor's degree or
below. Region Impact:

Certain regions, like Region 2 and Region 22, have higher promotion rates, suggesting potential regional biases or differences in
performance standards. Recommendations: Focus on Training and Development:

Enhance Training Programs: Invest in training programs to improve average training scores. Employees with higher training scores are more
likely to be promoted. Regular Assessments: Conduct regular assessments and provide feedback to help employees improve their training
scores. Reward and Recognition:

Incentivize Awards: Encourage and incentivize employees to participate in award programs, as winning awards significantly boosts promotion
chances. Transparent Criteria: Clearly communicate the criteria for winning awards to all employees. Performance Ratings:

Objective Evaluation: Ensure performance ratings are objective and consistent across departments to avoid biases. Regular Reviews:
Conduct regular performance reviews and provide constructive feedback to help employees improve their ratings. Tenure and Experience:

Career Path Planning: Develop clear career paths that outline the progression opportunities for employees based on their tenure and
performance. Mentorship Programs: Implement mentorship programs to support employees' career development and readiness for
promotion. Age and Promotion:

Age Diversity: Ensure that promotion policies do not inadvertently favor or disadvantage certain age groups. Promote age diversity and
inclusivity in the workplace. Departmental Balance:

Cross-Departmental Opportunities: Provide opportunities for employees in lower-promotion departments to participate in projects or roles in
higher-promotion departments. Standardize Criteria: Standardize promotion criteria across departments to ensure fairness and consistency.
Regional Considerations:

Uniform Standards: Implement uniform performance standards across all regions to ensure equal opportunities for promotion. Regional
Training Programs: Address regional disparities by providing additional support and training programs in regions with lower promotion rates.
Implementation Steps: Model Deployment:

Deploy the Random Forest model with the best parameters to predict promotions. Integrate the model into the HR system to assist in making
informed promotion decisions. Continuous Monitoring and Improvement:

Regularly monitor the model's performance and update it with new data to ensure its accuracy and relevance. Use feedback from the
promotion process to refine and improve the model. Employee Feedback:

Gather feedback from employees on the promotion process to identify areas for improvement. Ensure transparency and communication
about how promotions are decided and what employees can do to enhance their chances.* We have been able to build a predictive model:

e The company can utilize this model to predicte employee promotion

¢ The analysis can be used to distinguish and effect factors that drive promotion

e THe company can use the information to build "better" paths to promotion. Interestingly the random forest using original data gave us
"age" as a factor that influences promotion, this should be investigated further in order to institue policies that promote fairness in all age
groups

e Factors that help promotion - length_of_service, awards_won, previous_year_rating, age, avg_training_score

e awards_won. This factor influences prmotion positively, in other words if the employee has won an award it means that the likelihood of
promotion is higher

e previous_year _rating. The factor influences promotion the higher the ranking the higher the chances of promotion
e length_of_service. This factor is somewhat intuitive as the longer the tenure of an employee the higher the chances for promotion

e There was an important factor potentially missing from the model which is department. The data analysis shows a correlation of people
belonging to Technology to have a propensity of promotion over other groups

Loading [MathJax]/extensions/Safe.js

