
AllLife	Bank	Personal	Loan	Campaign

Context
AllLife	Bank	is	a	US	bank	that	has	a	growing	customer	base.	The	majority	of	these	customers	are	liability	customers	(depositors)	with	varying
sizes	of	deposits.	The	number	of	customers	who	are	also	borrowers	(asset	customers)	is	quite	small,	and	the	bank	is	interested	in	expanding
this	base	rapidly	to	bring	in	more	loan	business	and	in	the	process,	earn	more	through	the	interest	on	loans.	In	particular,	the	management
wants	to	explore	ways	of	converting	its	liability	customers	to	personal	loan	customers	(while	retaining	them	as	depositors).

A	campaign	that	the	bank	ran	last	year	for	liability	customers	showed	a	healthy	conversion	rate	of	over	9%	success.	This	has	encouraged	the
retail	marketing	department	to	devise	campaigns	with	better	target	marketing	to	increase	the	success	ratio.

You	as	a	Data	scientist	at	AllLife	bank	have	to	build	a	model	that	will	help	the	marketing	department	to	identify	the	potential	customers	who
have	a	higher	probability	of	purchasing	the	loan.

Objective
To	predict	whether	a	liability	customer	will	buy	personal	loans.
Which	variables	are	most	significant.
Which	segment	of	customers	should	be	targeted	more.

Data	Dictionary

ID:	Customer	ID
Age:	Customer’s	age	in	completed	years
Experience:	#years	of	professional	experience
Income:	Annual	income	of	the	customer	(in	thousand	dollars)
ZIP	Code:	Home	Address	ZIP	code.
Family:	the	Family	size	of	the	customer
CCAvg:	Average	spending	on	credit	cards	per	month	(in	thousand	dollars)
Education:	Education	Level.	1:	Undergrad;	2:	Graduate;3:	Advanced/Professional
Mortgage:	Value	of	house	mortgage	if	any.	(in	thousand	dollars)
Personal_Loan:	Did	this	customer	accept	the	personal	loan	offered	in	the	last	campaign?	(0:	No,	1:	Yes)
Securities_Account:	Does	the	customer	have	securities	account	with	the	bank?	(0:	No,	1:	Yes)
CD_Account:	Does	the	customer	have	a	certificate	of	deposit	(CD)	account	with	the	bank?	(0:	No,	1:	Yes)
Online:	Do	customers	use	internet	banking	facilities?	(0:	No,	1:	Yes)
CreditCard:	Does	the	customer	use	a	credit	card	issued	by	any	other	Bank	(excluding	All	life	Bank)?	(0:	No,	1:	Yes)

Loading	libraries

#	this	will	help	in	making	the	Python	code	more	structured	automatically	(good	coding	practice)
%load_ext	nb_black

import	warnings

warnings.filterwarnings("ignore")
from	statsmodels.tools.sm_exceptions	import	ConvergenceWarning

warnings.simplefilter("ignore",	ConvergenceWarning)

#	Libraries	to	help	with	reading	and	manipulating	data

import	pandas	as	pd
import	numpy	as	np

#	Library	to	split	data
from	sklearn.model_selection	import	train_test_split

#	libaries	to	help	with	data	visualization
import	matplotlib.pyplot	as	plt
import	seaborn	as	sns

#	Removes	the	limit	for	the	number	of	displayed	columns
pd.set_option("display.max_columns",	None)
#	Sets	the	limit	for	the	number	of	displayed	rows
pd.set_option("display.max_rows",	200)



Import	Dataset

View	the	first	and	last	5	rows	of	the	dataset.

ID Age Experience Income ZIPCode Family CCAvg Education Mortgage Personal_Loan Securities_Account CD_Account Online CreditCard

0 1 25 1 49 91107 4 1.6 1 0 0 1 0 0

1 2 45 19 34 90089 3 1.5 1 0 0 1 0 0

2 3 39 15 11 94720 1 1.0 1 0 0 0 0 0

3 4 35 9 100 94112 1 2.7 2 0 0 0 0 0

4 5 35 8 45 91330 4 1.0 2 0 0 0 0 0

ID Age Experience Income ZIPCode Family CCAvg Education Mortgage Personal_Loan Securities_Account CD_Account Online CreditCard

4995 4996 29 3 40 92697 1 1.9 3 0 0 0 0 1

4996 4997 30 4 15 92037 4 0.4 1 85 0 0 0 1

4997 4998 63 39 24 93023 2 0.3 3 0 0 0 0 0

4998 4999 65 40 49 90034 3 0.5 2 0 0 0 0 1

4999 5000 28 4 83 92612 3 0.8 1 0 0 0 0 1

Understand	the	shape	of	the	dataset.

(5000,	14)

#	To	build	model	for	prediction
from	sklearn.linear_model	import	LogisticRegression
from	sklearn.tree	import	DecisionTreeClassifier
from	sklearn	import	tree

#	To	tune	different	models
from	sklearn.model_selection	import	GridSearchCV

#	To	get	diferent	metric	scores
from	sklearn.metrics	import	(
				f1_score,
				accuracy_score,
				recall_score,
				precision_score,
				confusion_matrix,
				roc_auc_score,
				plot_confusion_matrix,
				precision_recall_curve,
				roc_curve,
				make_scorer,
)

#	For	pandas	profiling
from	pandas_profiling	import	ProfileReport

Loan	=	pd.read_csv("Loan_Modelling.csv")

#	copying	data	to	another	variable	to	avoid	any	changes	to	original	data
data	=	Loan.copy()

data.head()

data.tail()

data.shape



The	dataset	has	5000	rows	and	14	columns

Check	the	data	types	of	the	columns	for	the	dataset.

<class	'pandas.core.frame.DataFrame'>
RangeIndex:	5000	entries,	0	to	4999
Data	columns	(total	14	columns):
	#			Column														Non-Null	Count		Dtype		
---		------														--------------		-----		
	0			ID																		5000	non-null			int64		
	1			Age																	5000	non-null			int64		
	2			Experience										5000	non-null			int64		
	3			Income														5000	non-null			int64		
	4			ZIPCode													5000	non-null			int64		
	5			Family														5000	non-null			int64		
	6			CCAvg															5000	non-null			float64
	7			Education											5000	non-null			int64		
	8			Mortgage												5000	non-null			int64		
	9			Personal_Loan							5000	non-null			int64		
	10		Securities_Account		5000	non-null			int64		
	11		CD_Account										5000	non-null			int64		
	12		Online														5000	non-null			int64		
	13		CreditCard										5000	non-null			int64		
dtypes:	float64(1),	int64(13)
memory	usage:	547.0	KB

There	are	no	null	values	in	the	data.

<class	'pandas.core.frame.DataFrame'>
RangeIndex:	5000	entries,	0	to	4999
Data	columns	(total	14	columns):
	#			Column														Non-Null	Count		Dtype			
---		------														--------------		-----			
	0			ID																		5000	non-null			int64			
	1			Age																	5000	non-null			int64			
	2			Experience										5000	non-null			int64			
	3			Income														5000	non-null			int64			
	4			ZIPCode													5000	non-null			int64			
	5			Family														5000	non-null			int64			
	6			CCAvg															5000	non-null			float64	
	7			Education											5000	non-null			category
	8			Mortgage												5000	non-null			int64			
	9			Personal_Loan							5000	non-null			category
	10		Securities_Account		5000	non-null			category
	11		CD_Account										5000	non-null			category
	12		Online														5000	non-null			category
	13		CreditCard										5000	non-null			category
dtypes:	category(6),	float64(1),	int64(7)
memory	usage:	342.7	KB

Summary	of	the	dataset.

data.info()

##	Converting	the	data	type	of	categorical	features	to	'category'
cat_cols	=	[
				"Education",
				"Personal_Loan",
				"Securities_Account",
				"CD_Account",
				"Online",
				"CreditCard",
]
data[cat_cols]	=	data[cat_cols].astype("category")
data.info()

data.describe().T



count mean std min 25% 50% 75% max

ID 5000.0 2500.500000 1443.520003 1.0 1250.75 2500.5 3750.25 5000.0

Age 5000.0 45.338400 11.463166 23.0 35.00 45.0 55.00 67.0

Experience 5000.0 20.104600 11.467954 -3.0 10.00 20.0 30.00 43.0

Income 5000.0 73.774200 46.033729 8.0 39.00 64.0 98.00 224.0

ZIPCode 5000.0 93169.257000 1759.455086 90005.0 91911.00 93437.0 94608.00 96651.0

Family 5000.0 2.396400 1.147663 1.0 1.00 2.0 3.00 4.0

CCAvg 5000.0 1.937938 1.747659 0.0 0.70 1.5 2.50 10.0

Mortgage 5000.0 56.498800 101.713802 0.0 0.00 0.0 101.00 635.0

ID :	The	ID	attribute	does	not	add	any	information	to	our	analysis	as	all	the	values	are	unique.	There	is	no	association	between	a
person's	customer	ID	and	loan,	also	it	does	not	provide	any	general	conclusion	for	future	potential	loan	customers.	We	can	neglect	this
information	for	our	model	prediction.
Age :	Average	age	of	customers	is	45	years,	age	of	customers	has	a	wide	range	from	23	to	67	years.
Experience :	A	negative	experience	of	-3	seems	to	be	a	data	entry	error.	The	average	working	experience	of	the	customers	is	~20
years,	we	have	some	highly	experienced	working	professions	in	the	data.
Income :	Average	income	of	customers	is	73k	dollars.	Income	has	a	wide	range	from	8k	dollars	to	224k	dollars,	there's	also	a	very
huge	difference	in	75th	percentile	and	maximum	value	which	indicates	there	might	be	outliers	present	in	the	data.
ZIPCode :	ZIPCode	seems	to	have	many	unique	values,	we	will	see	if	some	insights	can	be	extracted	from	it.
Family :	75%	of	the	customers	have	3	or	less	than	3	dependents.
CCAvg :	Some	customers	have	average	spending	of	0	dollars	a	month.	There's	a	huge	difference	in	the	75th	percentile	and	maximum
value	of	the	average	spendings	indicating	that	there	might	be	outliers	present.
Mortgage :	Average	mortgage	value	of	house	of	customers	is	~56k	dollars.	Many	customers	do	not	have	any	mortgages.

count unique top freq

Education 5000 3 1 2096

Personal_Loan 5000 2 0 4520

Securities_Account 5000 2 0 4478

CD_Account 5000 2 0 4698

Online 5000 2 1 2984

CreditCard 5000 2 0 3530

Unique	values	in	Education	are	:
1				2096
3				1501
2				1403
Name:	Education,	dtype:	int64
**************************************************
Unique	values	in	Personal_Loan	are	:
0				4520
1					480
Name:	Personal_Loan,	dtype:	int64
**************************************************
Unique	values	in	Securities_Account	are	:
0				4478
1					522
Name:	Securities_Account,	dtype:	int64
**************************************************
Unique	values	in	CD_Account	are	:
0				4698
1					302

data	=	data.drop(["ID"],	axis=1)

data.describe(include=["category"]).T

for	i	in	cat_cols:
				print("Unique	values	in",	i,	"are	:")
				print(data[i].value_counts())
				print("*"	*	50)



Name:	CD_Account,	dtype:	int64
**************************************************
Unique	values	in	Online	are	:
1				2984
0				2016
Name:	Online,	dtype:	int64
**************************************************
Unique	values	in	CreditCard	are	:
0				3530
1				1470
Name:	CreditCard,	dtype:	int64
**************************************************

Education:	Most	of	the	customers	are	Graduates.
Personal_Loan:	Most	of	the	customers	didn't	accept	the	loan	in	the	previous	campaign.
Securities_Account:	Most	of	the	customers	do	not	have	a	Securities	Account.
CD_Account:	Most	of	the	customers	do	not	have	a	CD	Account.
Online:	Most	customers	do	not	use	internet	banking	facilities.
CreditCard:	Most	customers	do	not	use	credit	cards	from	any	other	bank.

EDA

Univariate	analysis

Observations	on	Age

def	histogram_boxplot(data,	feature,	figsize=(12,	7),	kde=False,	bins=None):
				"""
				Boxplot	and	histogram	combined

				data:	dataframe
				feature:	dataframe	column
				figsize:	size	of	figure	(default	(12,7))
				kde:	whether	to	show	the	density	curve	(default	False)
				bins:	number	of	bins	for	histogram	(default	None)
				"""
				f2,	(ax_box2,	ax_hist2)	=	plt.subplots(
								nrows=2,		#	Number	of	rows	of	the	subplot	grid=	2
								sharex=True,		#	x-axis	will	be	shared	among	all	subplots
								gridspec_kw={"height_ratios":	(0.25,	0.75)},
								figsize=figsize,
				)		#	creating	the	2	subplots
				sns.boxplot(
								data=data,	x=feature,	ax=ax_box2,	showmeans=True,	color="violet"
				)		#	boxplot	will	be	created	and	a	star	will	indicate	the	mean	value	of	the	column
				sns.histplot(
								data=data,	x=feature,	kde=kde,	ax=ax_hist2,	bins=bins,	palette="winter"
				)	if	bins	else	sns.histplot(
								data=data,	x=feature,	kde=kde,	ax=ax_hist2
				)		#	For	histogram
				ax_hist2.axvline(
								data[feature].mean(),	color="green",	linestyle="--"
				)		#	Add	mean	to	the	histogram
				ax_hist2.axvline(
								data[feature].median(),	color="black",	linestyle="-"
				)		#	Add	median	to	the	histogram

histogram_boxplot(data,	"Age")



The	distribution	of	Age	is	fairly	symmetrical	about	the	mean	and	the	median.
The	mean	and	median	age	of	customers	is	almost	equal	to	~45	years.

Observations	on	Experience

Treating	the	negative	values	of	Experience:	We	assume	that	these	negative	signs	here	are	data	input	errors,	so	we	will	replace	them
with	positive	signs

array([-1,	-2,	-3])

count				5000.000000
mean							20.134600
std								11.415189
min									0.000000
25%								10.000000
50%								20.000000
75%								30.000000
max								43.000000
Name:	Experience,	dtype:	float64

Minimum	value	of	experience	in	0	now.

data[data["Experience"]	<	0]["Experience"].unique()

data["Experience"].replace(-1,	1,	inplace=True)
data["Experience"].replace(-2,	2,	inplace=True)
data["Experience"].replace(-3,	3,	inplace=True)

data["Experience"].describe()

histogram_boxplot(data,	"Experience")



The	Experience	variable	seems	to	be	fairly	symmetrical	about	mean	and	median.
The	distribution	of	Experience	looks	like	the	distribution	of	Age,	it	would	be	interesting	to	see	if	there's	a	correlation	between	them.
The	mean	and	median	experience	of	customers	is	equal	to	~20	years.
Some	customers	have	experience	of	more	than	40	years.

Observations	on	Income

The	distribution	of	Income	is	skewed	to	right.
Some	customers	have	an	Income	above	200k	dollars.
50%	of	the	customers	have	income	less	than	64k	dollars.

Observations	on	CCAvg

histogram_boxplot(data,	"Income")

histogram_boxplot(data,	"CCAvg")



The	distribution	of	CCAvg	is	skewed	to	the	right	and	there	are	many	outliers.
50%	of	the	customers	have	CCAvg	less	than	1.5.
We	should	check	if	the	customers	who	spend	more	monthly	are	inclined	toward	taking	a	loan	or	not.

Observations	on	Mortgage

Most	customers	have	not	mortgaged	their	house	but	there	are	many	outliers.
Some	customers	have	a	mortgage	house	value	of	more	than	600k	dollars.
Such	customers	can	be	potential	customers	who	require	a	personal	loan.

histogram_boxplot(data,	"Mortgage")

#	function	to	create	labeled	barplots

def	labeled_barplot(data,	feature,	perc=False,	n=None):
				"""
				Barplot	with	percentage	at	the	top

				data:	dataframe
				feature:	dataframe	column
				perc:	whether	to	display	percentages	instead	of	count	(default	is	False)
				n:	displays	the	top	n	category	levels	(default	is	None,	i.e.,	display	all	levels)
				"""

				total	=	len(data[feature])		#	length	of	the	column
				count	=	data[feature].nunique()
				if	n	is	None:
								plt.figure(figsize=(count	+	1,	5))
				else:
								plt.figure(figsize=(n	+	1,	5))

				plt.xticks(rotation=90,	fontsize=15)
				ax	=	sns.countplot(
								data=data,
								x=feature,
								palette="Paired",
								order=data[feature].value_counts().index[:n].sort_values(),
				)

				for	p	in	ax.patches:
								if	perc	==	True:
												label	=	"{:.1f}%".format(
																100	*	p.get_height()	/	total



Observations	on	Family

Most	of	the	customers	are	single/live	alone	(~30%).
Second	most	are	the	ones	with	one	dependent	on	them	(25.9%).

Observations	on	Education

												)		#	percentage	of	each	class	of	the	category
								else:
												label	=	p.get_height()		#	count	of	each	level	of	the	category

								x	=	p.get_x()	+	p.get_width()	/	2		#	width	of	the	plot
								y	=	p.get_height()		#	height	of	the	plot

								ax.annotate(
												label,
												(x,	y),
												ha="center",
												va="center",
												size=12,
												xytext=(0,	5),
												textcoords="offset	points",
								)		#	annotate	the	percentage

				plt.show()		#	show	the	plot

labeled_barplot(data,	"Family",	perc=True)

#	Let's	map	the	values	to	1:	Undergrad;	2:	Graduate	3:	Advanced/Professional

data["Education"].replace(1,	"Undergraduate",	inplace=True)
data["Education"].replace(2,	"Graduate",	inplace=True)
data["Education"].replace(3,	"Professional",	inplace=True)

labeled_barplot(data,	"Education",	perc=True)



Most	of	the	customers	are	undergraduate	(41.9%),	followed	by	customers	who	have	advanced/professional	education	(30%).

Observations	on	Securities_Account

89%	of	the	customers	do	not	have	a	securities	account.

Observations	on	CD_Account

94%	of	the	customers	do	not	have	a	certificate	of	deposit	(CD_Account)	with	the	bank.

Observations	on	Online

labeled_barplot(data,	"Securities_Account",	perc=True)

labeled_barplot(data,	"CD_Account",	perc=True)

labeled_barplot(data,	"Online",	perc=True)



Approximately	60%	of	the	customers	use	internet	banking	facilities.

Observation	on	CreditCard

Approximately	70%	of	customers	do	not	have	a	credit	card	issued	by	any	other	bank.

Observation	on	ZIPCode

467

There	are	467	unique	values	in	the	zip	code.
In	the	US,	The	first	digit	of	a	PIN	indicates	the	zone	or	a	region,	the	second	indicates	the	sub-zone,	and	the	third,	combined	with	the	first
two,	indicates	the	sorting	district	within	that	zone.	The	final	three	digits	are	assigned	to	individual	post	offices	within	the	sorting	district
Let's	try	to	group	them	based	on	the	first	2	digits	to	reduce	the	number	of	unique	values	in	the	ZIPCode	column.

labeled_barplot(data,	"Online",	perc=True)

labeled_barplot(data,	"CreditCard",	perc=True)

#	checking	the	number	of	uniques	in	the	zip	code
data["ZIPCode"].nunique()

data["ZIPCode"]	=	data["ZIPCode"].astype(str)
print(
				"Number	of	unique	values	if	we	take	first	two	digits	of	ZIPCode:	",
				data["ZIPCode"].str[0:2].nunique(),
)



Number	of	unique	values	if	we	take	first	two	digits	of	ZIPCode:		7

All	the	customers	are	from	region	9	and	most	from	sub-region	4	followed	by	sub-region	2.
This	indicates	that	is	located	in	region	9	and	has	customers	from	nearby	areas.

Bivariate	Analysis

Age	and	Experience	have	a	perfect	correlation	hence	one	of	these	variables	can	be	dropped	while	model	building	as	they	will	provide	the
same	information	to	the	model.

Income	and	CCAvg	have	a	moderate	correlation	which	makes	sense	as	the	Income	increases	the	spendings	might	also	increase.

Family	has	a	negative	correlation	with	Income,	which	is	quite	surprising	as	family	size	increases	the	income	of	the	family	decreases.	But
this	correlation	is	not	too	strong	to	conclude.

data["ZIPCode"]	=	data["ZIPCode"].str[0:2]

labeled_barplot(data,	"ZIPCode",	perc=True)

plt.figure(figsize=(15,	7))
sns.heatmap(data.corr(),	annot=True,	vmin=-1,	vmax=1,	fmt=".2f",	cmap="Spectral")
plt.show()

def	stacked_barplot(data,	predictor,	target):



Personal_Loan	vs	Education

Personal_Loan					0				1			All
Education																					
All												4520		480		5000
Professional			1296		205		1501
Graduate							1221		182		1403
Undergraduate		2003			93		2096
-----------------------------------------------------------------------------------------------------------------
-------

~15%	of	the	customers	who	have	done	advanced/professional	studies	are	the	ones	that	require	a	personal	loan.
Undergraduates	have	the	least	requirement	of	personal	loans.

Personal_Loan	vs	Family

Personal_Loan					0				1			All
Family																								
All												4520		480		5000
4														1088		134		1222
3															877		133		1010

def	stacked_barplot(data,	predictor,	target):
				"""
				Print	the	category	counts	and	plot	a	stacked	bar	chart

				data:	dataframe
				predictor:	independent	variable
				target:	target	variable
				"""
				count	=	data[predictor].nunique()
				sorter	=	data[target].value_counts().index[-1]
				tab1	=	pd.crosstab(data[predictor],	data[target],	margins=True).sort_values(
								by=sorter,	ascending=False
				)
				print(tab1)
				print("-"	*	120)
				tab	=	pd.crosstab(data[predictor],	data[target],	normalize="index").sort_values(
								by=sorter,	ascending=False
				)
				tab.plot(kind="bar",	stacked=True,	figsize=(count	+	5,	5))
				plt.legend(
								loc="lower	left",	frameon=False,
				)
				plt.legend(loc="upper	left",	bbox_to_anchor=(1,	1))
				plt.show()

stacked_barplot(data,	"Education",	"Personal_Loan")

stacked_barplot(data,	"Family",	"Personal_Loan")



1														1365		107		1472
2														1190		106		1296
-----------------------------------------------------------------------------------------------------------------
-------

As	the	family	size	increases	the	requirement	of	a	Personal	Loan	also	increases.
Customers	who	have	a	family	size	of	more	than	2	are	more	likely	to	take	a	Personal	Loan.

Personal_Loan	vs	Securities_Account

Personal_Loan										0				1			All
Securities_Account																	
All																	4520		480		5000
0																			4058		420		4478
1																				462			60			522
-----------------------------------------------------------------------------------------------------------------
-------

There's	not	much	difference	between	the	customers	who	do	or	do	not	have	a	Security	Account	and	require	a	Personal	Loan.

Personal_Loan	vs	CD_Account

Personal_Loan					0				1			All
CD_Account																				
All												4520		480		5000
0														4358		340		4698
1															162		140			302
-----------------------------------------------------------------------------------------------------------------

stacked_barplot(data,	"Securities_Account",	"Personal_Loan")

stacked_barplot(data,	"CD_Account",	"Personal_Loan")



-------

~50%	of	the	customers	who	have	a	certificate	of	deposit	with	the	bank	(CD_Account)	are	the	ones	that	have	the	requirement	of	a
Personal	Loan.
This	can	be	one	of	the	significant	predictors	of	Personal	Loan	as	it	provides	good	separation	between	two	classes.

Personal_Loan	vs	Online

Personal_Loan					0				1			All
Online																								
All												4520		480		5000
1														2693		291		2984
0														1827		189		2016
-----------------------------------------------------------------------------------------------------------------
-------

There's	not	much	difference	between	the	customers	who	do	or	do	use	internet	banking	facilities	and	require	a	Personal	Loan.

Personal_Loan	vs	CreditCard

Personal_Loan					0				1			All
CreditCard																				
All												4520		480		5000
0														3193		337		3530
1														1327		143		1470
-----------------------------------------------------------------------------------------------------------------
-------

stacked_barplot(data,	"Online",	"Personal_Loan")

stacked_barplot(data,	"CreditCard",	"Personal_Loan")



There's	not	much	difference	between	the	customers	who	do	or	do	use	a	credit	card	from	other	banks	and	require	a	Personal	Loan.

Personal_Loan	vs	ZIPCode

Personal_Loan					0				1			All
ZIPCode																							
All												4520		480		5000
94													1334		138		1472
92														894			94			988
95														735			80			815
90														636			67			703
91														510			55			565
93														374			43			417
96															37				3				40
-----------------------------------------------------------------------------------------------------------------
-------

All	the	sub-regions	show	fairly	the	same	distribution/	requirement	of	a	Personal	Loan.

stacked_barplot(data,	"ZIPCode",	"Personal_Loan")

###	function	to	plot	distributions	wrt	target

def	distribution_plot_wrt_target(data,	predictor,	target):

				fig,	axs	=	plt.subplots(2,	2,	figsize=(12,	10))

				target_uniq	=	data[target].unique()

				axs[0,	0].set_title("Distribution	of	target	for	target="	+	str(target_uniq[0]))
				sns.histplot(
								data=data[data[target]	==	target_uniq[0]],
								x=predictor,



Personal	Loan	vs	Age

								kde=True,
								ax=axs[0,	0],
								color="teal",
								stat="density",
				)

				axs[0,	1].set_title("Distribution	of	target	for	target="	+	str(target_uniq[1]))
				sns.histplot(
								data=data[data[target]	==	target_uniq[1]],
								x=predictor,
								kde=True,
								ax=axs[0,	1],
								color="orange",
								stat="density",
				)

				axs[1,	0].set_title("Boxplot	w.r.t	target")
				sns.boxplot(data=data,	x=target,	y=predictor,	ax=axs[1,	0],	palette="gist_rainbow")

				axs[1,	1].set_title("Boxplot	(without	outliers)	w.r.t	target")
				sns.boxplot(
								data=data,
								x=target,
								y=predictor,
								ax=axs[1,	1],
								showfliers=False,
								palette="gist_rainbow",
				)

				plt.tight_layout()
				plt.show()

distribution_plot_wrt_target(data,	"Age",	"Personal_Loan")



The	customers	who	have	the	requirement	of	a	Personal	Loan	have	a	wider	range	than	the	ones	who	do	not	require	a	Personal	Loan.

Personal	Loan	vs	Experience

There's	no	difference	in	the	years	of	experience	of	customers	who	took	Personal	Loan	and	those	who	did	not.

Personal	Loan	vs	Income

distribution_plot_wrt_target(data,	"Experience",	"Personal_Loan")

distribution_plot_wrt_target(data,	"Income",	"Personal_Loan")



Those	customers	who	have	an	income	higher	than	90k-100k	dollars	are	the	potential	customers	who	will	take	the	Personal	Loan.
Income	seems	to	be	a	significant	predictor	as	it	provides	a	good	separation	between	two	classes.

Personal	Loan	vs	CCAvg

The	customers	with	a	CCAvg	of	greater	than	5	can	be	the	potential	customers	who	opt	for	Personal	Loan.

distribution_plot_wrt_target(data,	"CCAvg",	"Personal_Loan")

cols	=	data[["Income",	"CCAvg"]].columns.tolist()



Customers	who	require	Personal	Loans	are	the	ones	whose	income	fluctuates	largely	with	the	increase	in	Age	and	-	This	clearly	shows
how	financial	stability	plays	a	big	part	in	the	requirement	of	a	loan.	Customers	whose	income	fluctuates	largely	with	the	age	i.e.	have	less
income	stability	are	more	likely	to	take	a	personal	loan.

We	can	observe	a	similar	pattern	like	income	w.r.t	CCAvg.

Let's	find	the	percentage	of	outliers,	in	each	column	of	the	data,	using	IQR.

Age											0.00
Experience				0.00
Income								1.92
Family								0.00
CCAvg									6.48
Mortgage						5.82
dtype:	float64

After	identifying	outliers,	we	can	decide	whether	to	remove/treat	them	or	not.	It	depends	on	one's	approach,	here	we	are	not	going	to
treat	them	as	there	will	be	outliers	in	a	real	case	scenario	(in	Income,	Mortgage	value,	Average	spending	on	the	credit	card,	etc)	and	we
would	want	our	model	to	learn	the	underlying	pattern	for	such	customers.

Data	Preparation

We	have	6	categorical	independent	variables	but	4	of	them	are	binary,	so	we'll	have	the	same	results	with	them	even	after	creating

cols	=	data[["Income",	"CCAvg"]].columns.tolist()
plt.figure(figsize=(15,	12))
for	i,	variable	in	enumerate(cols):
				plt.subplot(3,	3,	i	+	1)
				sns.lineplot(data["Age"],	data[variable],	hue=data["Personal_Loan"],	ci=0)
				plt.tight_layout()
				plt.title(variable)
				plt.legend(bbox_to_anchor=(1,	1))
plt.show()

Q1	=	data.quantile(0.25)		#	To	find	the	25th	percentile	and	75th	percentile.
Q3	=	data.quantile(0.75)

IQR	=	Q3	-	Q1		#	Inter	Quantile	Range	(75th	perentile	-	25th	percentile)

lower	=	(
				Q1	-	1.5	*	IQR
)		#	Finding	lower	and	upper	bounds	for	all	values.	All	values	outside	these	bounds	are	outliers
upper	=	Q3	+	1.5	*	IQR

(
				(data.select_dtypes(include=["float64",	"int64"])	<	lower)
				|	(data.select_dtypes(include=["float64",	"int64"])	>	upper)
).sum()	/	len(data)	*	100



dummies
So	we	will	only	make	dummies	for	ZIPCode	and	Education.

Shape	of	Training	set	:		(3500,	17)
Shape	of	test	set	:		(1500,	17)
Percentage	of	classes	in	training	set:
0				0.905429
1				0.094571
Name:	Personal_Loan,	dtype:	float64
Percentage	of	classes	in	test	set:
0				0.900667
1				0.099333
Name:	Personal_Loan,	dtype:	float64

Building	the	model

Model	evaluation	criterion

Model	can	make	wrong	predictions	as:

1.	 Predicting	a	customer	will	take	the	personal	loan	but	in	reality	the	customer	will	not	take	the	personal	loan	-	Loss	of	resources
2.	 Predicting	a	customer	will	not	take	the	personal	loan	but	in	reality	the	customer	was	going	to	take	the	personal	loan	-	Loss	of	opportunity

Which	case	is	more	important?

Losing	a	potential	customer	by	predicting	that	the	customer	will	not	be	taking	the	personal	loan	but	in	reality	the	customer	was	going	to
take	the	personal	loan.

How	to	reduce	this	loss	i.e	need	to	reduce	False	Negatives?

Bank	would	want	 Recall 	to	be	maximized,	greater	the	Recall	higher	the	chances	of	minimizing	false	negatives.	Hence,	the	focus
should	be	on	increasing	Recall	or	minimizing	the	false	negatives.

First,	let's	create	functions	to	calculate	different	metrics	and	confusion	matrix	so	that	we	don't	have	to	use	the	same
code	repeatedly	for	each	model.

The	model_performance_classification_sklearn_with_threshold	function	will	be	used	to	check	the	model	performance	of	models.
The	confusion_matrix_sklearn_with_threshold	function	will	be	used	to	plot	confusion	matrix.

data["ZIPCode"]	=	data["ZIPCode"].astype("category")

#	dropping	Experience	as	it	is	perfectly	correlated	with	Age
X	=	data.drop(["Personal_Loan",	"Experience"],	axis=1)

Y	=	data["Personal_Loan"]

X	=	pd.get_dummies(X,	columns=["ZIPCode",	"Education"],	drop_first=True)

#	Splitting	data	in	train	and	test	sets
X_train,	X_test,	y_train,	y_test	=	train_test_split(
				X,	Y,	test_size=0.30,	random_state=1
)

print("Shape	of	Training	set	:	",	X_train.shape)
print("Shape	of	test	set	:	",	X_test.shape)
print("Percentage	of	classes	in	training	set:")
print(y_train.value_counts(normalize=True))
print("Percentage	of	classes	in	test	set:")
print(y_test.value_counts(normalize=True))

#	defining	a	function	to	compute	different	metrics	to	check	performance	of	a	classification	model	built	using	sklearn

def	model_performance_classification_sklearn_with_threshold(
				model,	predictors,	target,	threshold=0.5
):



Logistic	Regression

Finding	the	coefficients

Age Income Family CCAvg Mortgage Securities_Account CD_Account Online CreditCard ZIPCode_91 ZIPCode_92 ZIPCode_93

coef 0.00487 0.05467 0.63135 0.18623 0.00089 -0.78992 3.11938 -0.53050 -0.84321 -0.11836 0.23322 0.21395

Coefficient	interpretation

				"""
				Function	to	compute	different	metrics,	based	on	the	threshold	specified,	to	check	classification	model	performance

				model:	classifier
				predictors:	independent	variables
				target:	dependent	variable
				threshold:	threshold	for	classifying	the	observation	as	class	1
				"""

				#	predicting	using	the	independent	variables
				pred_prob	=	model.predict_proba(predictors)[:,	1]
				pred_thres	=	pred_prob	>	threshold
				pred	=	np.round(pred_thres)

				acc	=	accuracy_score(target,	pred)		#	to	compute	Accuracy
				recall	=	recall_score(target,	pred)		#	to	compute	Recall
				precision	=	precision_score(target,	pred)		#	to	compute	Precision
				f1	=	f1_score(target,	pred)		#	to	compute	F1-score

				#	creating	a	dataframe	of	metrics
				df_perf	=	pd.DataFrame(
								{"Accuracy":	acc,	"Recall":	recall,	"Precision":	precision,	"F1":	f1,},
								index=[0],
				)

				return	df_perf

#	defining	a	function	to	plot	the	confusion_matrix	of	a	classification	model	built	using	sklearn
def	confusion_matrix_sklearn_with_threshold(model,	predictors,	target,	threshold=0.5):
				"""
				To	plot	the	confusion_matrix,	based	on	the	threshold	specified,	with	percentages

				model:	classifier
				predictors:	independent	variables
				target:	dependent	variable
				threshold:	threshold	for	classifying	the	observation	as	class	1
				"""
				pred_prob	=	model.predict_proba(predictors)[:,	1]
				pred_thres	=	pred_prob	>	threshold
				y_pred	=	np.round(pred_thres)

				cm	=	confusion_matrix(target,	y_pred)
				labels	=	np.asarray(
								[
												["{0:0.0f}".format(item)	+	"\n{0:.2%}".format(item	/	cm.flatten().sum())]
												for	item	in	cm.flatten()
								]
				).reshape(2,	2)

				plt.figure(figsize=(6,	4))
				sns.heatmap(cm,	annot=labels,	fmt="")
				plt.ylabel("True	label")
				plt.xlabel("Predicted	label")

#	There	are	different	solvers	available	in	Sklearn	logistic	regression
#	The	newton-cg	solver	is	faster	for	high-dimensional	data

lg	=	LogisticRegression(solver="newton-cg",	random_state=1)
model	=	lg.fit(X_train,	y_train)

log_odds	=	lg.coef_[0]
pd.options.display.float_format	=	"{:.5f}".format
pd.DataFrame(log_odds,	X_train.columns,	columns=["coef"]).T



Coefficient	interpretation

Coefficients	of	Age,	Income,	Family,	CCAvg,	CD_Account,	and	Education,	and	some	levels	of	ZIPCode	are	positive	an	increase	in	these
will	lead	to	an	increase	in	chances	of	taking	a	personal	loan.

Coefficients	of	Securities_Account,	CreditCard,	Online,	and	some	levels	of	ZIPCode	are	negative	an	increase	in	these	will	lead	to	a
decrease	in	chances	of	taking	a	personal	loan.

Converting	coefficients	to	odds

The	coefficients	of	the	logistic	regression	model	are	in	terms	of	log(odd),	to	find	the	odds	we	have	to	take	the	exponential	of	the
coefficients.
Therefore,	odds	=	exp(b)
The	percentage	change	in	odds	is	given	as	odds	=	(exp(b)	-	1)	*	100

Age Income Family CCAvg Mortgage Securities_Account CD_Account Online CreditCard ZIPCode_91 ZIPCode_92

Odds 1.00489 1.05619 1.88015 1.20470 1.00089 0.45388 22.63246 0.58831 0.43033 0.88837 1.26266

Change_odd% 0.48861 5.61936 88.01472 20.47008 0.08916 -54.61184 2163.24551 -41.16912 -56.96729 -11.16277 26.26641

Coefficient	interpretations

Age :	Holding	all	other	features	constant	a	1	unit	change	in	Age	will	increase	the	odds	of	a	customer	taking	the	personal	loan	by	1.004
times	or	a	0.48%	increase	in	the	odds.
Income :	Holding	all	other	features	constant	a	1	unit	change	in	Income	will	increase	the	odds	of	taking	a	personal	loan	by	1.05	times	or
a	5.61%	increase	in	the	odds.
Family :	Holding	all	other	features	constant	a	1	unit	change	in	Family	will	increase	the	odds	of	taking	a	personal	loan	by	1.88	times	or
a	88.01%	increase	in	the	odds.
CCAvg :	Holding	all	other	features	constant	a	1	unit	change	in	CCAvg	will	increase	the	odds	of	a	customer	taking	a	personal	loan	by
1.20	times	or	a	20.47%	increase	in	the	odds.
Securities_Account :	The	odds	of	a	customer	who	has	a	Securities_Account	with	bank	taking	a	personal	loan	is	0.45	times	or
54.6%	less	than	the	customer	who	doesn't	have	a	Securities_Account.
Online :	The	odds	of	a	customer	who	prefers	internet	banking	facilities	taking	a	personal	loan	is	0.58	times	or	41.16%	less	than	the
customer	who	doesn't	use	internet	banking	facilities.
The	odds	of	a	customer	from	ZIPCode_91	are	0.88	times	or	11.16%	less	than	the	customer	from	ZIPCode_90.	Similarly,	the	odds	of	a
customer	from	ZIPCode_92	are	1.26	times	or	26.26%	more	than	the	customer	from	ZIPCode_90.	Interpretation	of	other	ZIPCodes	can
be	done	in	the	same	way	by	keeping	ZIPCode_90	as	the	reference.
Education	and	CD_Account	have	greater	coefficients,	so	small	changes	in	their	value	will	have	a	bigger	change	in	chances	of	taking	a
personal	loan.

Interpretation	for	other	attributes	can	be	made	similarly.

Checking	model	performance	on	the	training	set

#	converting	coefficients	to	odds
odds	=	np.exp(lg.coef_[0])

#	finding	the	percentage	change
perc_change_odds	=	(np.exp(lg.coef_[0])	-	1)	*	100

#	removing	limit	from	number	of	columns	to	display
pd.set_option("display.max_columns",	None)

#	adding	the	odds	to	a	dataframe
pd.DataFrame({"Odds":	odds,	"Change_odd%":	perc_change_odds},	index=X_train.columns).T

#	creating	confusion	matrix
confusion_matrix_sklearn_with_threshold(lg,	X_train,	y_train)



Training	performance:

Accuracy Recall Precision F1

0 0.95657 0.64350 0.86235 0.73702

ROC-AUC

ROC-AUC	on	training	set

Logistic	Regression	model	is	giving	a	good	performance	on	training	set.
ROC-AUC	score	of	0.96	on	training	is	quite	good.

Model	Performance	Improvement

Let's	see	if	the	recall	score	can	be	improved	further,	by	changing	the	model	threshold	using	AUC-ROC	Curve.

Optimal	threshold	using	AUC-ROC	curve

log_reg_model_train_perf	=	model_performance_classification_sklearn_with_threshold(
				lg,	X_train,	y_train
)

print("Training	performance:")
log_reg_model_train_perf

logit_roc_auc_train	=	roc_auc_score(y_train,	lg.predict_proba(X_train)[:,	1])
fpr,	tpr,	thresholds	=	roc_curve(y_train,	lg.predict_proba(X_train)[:,	1])
plt.figure(figsize=(7,	5))
plt.plot(fpr,	tpr,	label="Logistic	Regression	(area	=	%0.2f)"	%	logit_roc_auc_train)
plt.plot([0,	1],	[0,	1],	"r--")
plt.xlim([0.0,	1.0])
plt.ylim([0.0,	1.05])
plt.xlabel("False	Positive	Rate")
plt.ylabel("True	Positive	Rate")
plt.title("Receiver	operating	characteristic")
plt.legend(loc="lower	right")
plt.show()

#	Optimal	threshold	as	per	AUC-ROC	curve



0.11898835370314324

Checking	model	performance	on	the	training	set

Training	performance:
Accuracy Recall Precision F1

0 0.91429 0.89426 0.52763 0.66368

Recall	has	increased	significantly	as	compared	to	the	previous	model.
As	we	will	decrease	the	threshold	value,	Recall	will	keep	on	increasing	and	the	Precision	will	decrease,	but	this	not	right	because	it	will
lead	to	loss	of	resources,	we	need	to	choose	an	optimal	balance	between	recall	and	precision.

Let's	use	Precision-Recall	curve	and	see	if	we	can	find	a	better	threshold

#	The	optimal	cut	off	would	be	where	tpr	is	high	and	fpr	is	low
fpr,	tpr,	thresholds	=	roc_curve(y_train,	lg.predict_proba(X_train)[:,	1])

optimal_idx	=	np.argmax(tpr	-	fpr)
optimal_threshold_auc_roc	=	thresholds[optimal_idx]
print(optimal_threshold_auc_roc)

#	creating	confusion	matrix
confusion_matrix_sklearn_with_threshold(
				lg,	X_train,	y_train,	threshold=optimal_threshold_auc_roc
)

#	checking	model	performance	for	this	model
log_reg_model_train_perf_threshold_auc_roc	=	model_performance_classification_sklearn_with_threshold(
				lg,	X_train,	y_train,	threshold=optimal_threshold_auc_roc
)
print("Training	performance:")
log_reg_model_train_perf_threshold_auc_roc

y_scores	=	lg.predict_proba(X_train)[:,	1]
prec,	rec,	tre	=	precision_recall_curve(y_train,	y_scores,)

def	plot_prec_recall_vs_tresh(precisions,	recalls,	thresholds):
				plt.plot(thresholds,	precisions[:-1],	"b--",	label="precision")
				plt.plot(thresholds,	recalls[:-1],	"g--",	label="recall")
				plt.xlabel("Threshold")
				plt.legend(loc="upper	left")
				plt.ylim([0,	1])

plt.figure(figsize=(10,	7))
plot_prec_recall_vs_tresh(prec,	rec,	tre)
plt.show()



(array([0.1233234	,	0.12299665,	0.12304251,	...,	1.								,	1.								,
								1.								]),
	array([1.								,	0.99697885,	0.99697885,	...,	0.0060423	,	0.00302115,
								0.								]),
	array([9.84029444e-04,	9.86809752e-04,	9.88116837e-04,	...,
								9.98904153e-01,	9.99431451e-01,	9.99773021e-01]))

0.7673716012084593
0.32941229712111236

At	threshold	around	0.27	we	get	a	higher	recall	and	a	good	precision.

Checking	model	performance	on	training	set

prec,	rec,	tre

for	i	in	range(0,	len(prec)):
				if	prec[i]	==	rec[i]:
								print(prec[i])
								print(tre[i])
								break

#	setting	the	threshold
optimal_threshold_curve	=	0.27

optimal_threshold_curve	=	0.3294

#	creating	confusion	matrix
confusion_matrix_sklearn_with_threshold(
				lg,	X_train,	y_train,	threshold=optimal_threshold_curve
)



Training	performance:

Accuracy Recall Precision F1

0 0.95600 0.76737 0.76737 0.76737

Training	performance:
Accuracy Recall Precision F1

0 0.95600 0.76737 0.76737 0.76737

17

Model	is	performing	well	on	training	set.
Model	has	given	a	balanced	performance,	if	the	bank	wishes	to	maintain	a	balance	between	recall	and	precision	this	model	can	be	used.

Sequential	Feature	Selector

log_reg_model_train_perf_threshold_curve	=	model_performance_classification_sklearn_with_threshold(
				lg,	X_train,	y_train,	threshold=optimal_threshold_curve
)
print("Training	performance:")
log_reg_model_train_perf_threshold_curve

log_reg_model_train_perf_threshold_curve	=	model_performance_classification_sklearn_with_threshold(
				lg,	X_train,	y_train,	threshold=optimal_threshold_curve
)
print("Training	performance:")
log_reg_model_train_perf_threshold_curve

len(X.columns)

#	Sequential	feature	selector	is	present	in	mlxtend	library
#	!pip	install	mlxtend	to	install	mlxtent	library

from	mlxtend.feature_selection	import	SequentialFeatureSelector	as	SFS

#	to	plot	the	performance	with	addition	of	each	feature
from	mlxtend.plotting	import	plot_sequential_feature_selection	as	plot_sfs

##	Defining	X	and	Y	variables
X	=	data.drop(["Personal_Loan",	"Experience"],	axis=1)
Y	=	data[["Personal_Loan"]]

X	=	pd.get_dummies(X,	columns=["ZIPCode",	"Education"],	drop_first=True)

#	Splitting	data	in	train	and	test	sets
X_train2,	X_test2,	y_train2,	y_test2	=	train_test_split(
				X,	Y,	test_size=0.30,	random_state=1
)

#	Fit	the	model	on	train
model	=	LogisticRegression(solver="newton-cg",	n_jobs=-1,	random_state=1)



[Parallel(n_jobs=-1)]:	Using	backend	LokyBackend	with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			7	out	of		17	|	elapsed:				1.1s	remaining:				1.5s
[Parallel(n_jobs=-1)]:	Done		17	out	of		17	|	elapsed:				1.1s	finished

[2024-06-21	17:28:01]	Features:	1/17	--	score:	0.32623247399366806[Parallel(n_jobs=-1)]:	Using	backend	LokyBacken
d	with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			6	out	of		16	|	elapsed:				0.2s	remaining:				0.3s
[Parallel(n_jobs=-1)]:	Done		16	out	of		16	|	elapsed:				0.3s	finished

[2024-06-21	17:28:02]	Features:	2/17	--	score:	0.4379466304839439[Parallel(n_jobs=-1)]:	Using	backend	LokyBackend	
with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			4	out	of		15	|	elapsed:				0.2s	remaining:				0.5s
[Parallel(n_jobs=-1)]:	Done		12	out	of		15	|	elapsed:				0.4s	remaining:				0.1s
[Parallel(n_jobs=-1)]:	Done		15	out	of		15	|	elapsed:				0.4s	finished

[2024-06-21	17:28:02]	Features:	3/17	--	score:	0.48946178199909546[Parallel(n_jobs=-1)]:	Using	backend	LokyBacken
d	with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			3	out	of		14	|	elapsed:				0.2s	remaining:				0.8s
[Parallel(n_jobs=-1)]:	Done		11	out	of		14	|	elapsed:				0.4s	remaining:				0.1s
[Parallel(n_jobs=-1)]:	Done		14	out	of		14	|	elapsed:				0.4s	finished

[2024-06-21	17:28:03]	Features:	4/17	--	score:	0.6344188150158299[Parallel(n_jobs=-1)]:	Using	backend	LokyBackend	
with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			8	out	of		13	|	elapsed:				0.2s	remaining:				0.1s
[Parallel(n_jobs=-1)]:	Done		13	out	of		13	|	elapsed:				0.4s	finished

[2024-06-21	17:28:03]	Features:	5/17	--	score:	0.6374038896426957[Parallel(n_jobs=-1)]:	Using	backend	LokyBackend	
with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			7	out	of		12	|	elapsed:				0.2s	remaining:				0.2s
[Parallel(n_jobs=-1)]:	Done		12	out	of		12	|	elapsed:				0.4s	finished

[2024-06-21	17:28:03]	Features:	6/17	--	score:	0.6374038896426957[Parallel(n_jobs=-1)]:	Using	backend	LokyBackend	
with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			4	out	of		11	|	elapsed:				0.2s	remaining:				0.4s
[Parallel(n_jobs=-1)]:	Done		11	out	of		11	|	elapsed:				0.4s	finished

[2024-06-21	17:28:04]	Features:	7/17	--	score:	0.6494798733604703[Parallel(n_jobs=-1)]:	Using	backend	LokyBackend	
with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			3	out	of		10	|	elapsed:				0.2s	remaining:				0.5s
[Parallel(n_jobs=-1)]:	Done		10	out	of		10	|	elapsed:				0.3s	finished

[2024-06-21	17:28:04]	Features:	8/17	--	score:	0.6585707824513795[Parallel(n_jobs=-1)]:	Using	backend	LokyBackend	
with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			5	out	of			9	|	elapsed:				0.3s	remaining:				0.2s
[Parallel(n_jobs=-1)]:	Done			9	out	of			9	|	elapsed:				0.3s	finished

[2024-06-21	17:28:04]	Features:	9/17	--	score:	0.6585707824513795[Parallel(n_jobs=-1)]:	Using	backend	LokyBackend	
with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			4	out	of			8	|	elapsed:				0.2s	remaining:				0.2s
[Parallel(n_jobs=-1)]:	Done			8	out	of			8	|	elapsed:				0.3s	finished

[2024-06-21	17:28:05]	Features:	10/17	--	score:	0.6645861601085482[Parallel(n_jobs=-1)]:	Using	backend	LokyBacken
d	with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			4	out	of			7	|	elapsed:				0.2s	remaining:				0.2s
[Parallel(n_jobs=-1)]:	Done			7	out	of			7	|	elapsed:				0.3s	finished

[2024-06-21	17:28:05]	Features:	11/17	--	score:	0.6645861601085482[Parallel(n_jobs=-1)]:	Using	backend	LokyBacken
d	with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			3	out	of			6	|	elapsed:				0.3s	remaining:				0.3s
[Parallel(n_jobs=-1)]:	Done			6	out	of			6	|	elapsed:				0.3s	finished

[2024-06-21	17:28:05]	Features:	12/17	--	score:	0.661555857078245[Parallel(n_jobs=-1)]:	Using	backend	LokyBackend	
with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			5	out	of			5	|	elapsed:				0.3s	finished

[2024-06-21	17:28:05]	Features:	13/17	--	score:	0.661555857078245[Parallel(n_jobs=-1)]:	Using	backend	LokyBackend	
with	10	concurrent	workers.

#	we	will	first	build	model	with	all	varaible
sfs	=	SFS(
				model,
				k_features=17,
				forward=True,
				floating=False,
				scoring="recall",
				verbose=2,
				cv=5,
				n_jobs=-1,
)

sfs	=	sfs.fit(X_train2,	y_train2)



[Parallel(n_jobs=-1)]:	Done			4	out	of			4	|	elapsed:				0.3s	finished

[2024-06-21	17:28:06]	Features:	14/17	--	score:	0.661555857078245[Parallel(n_jobs=-1)]:	Using	backend	LokyBackend	
with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			3	out	of			3	|	elapsed:				0.2s	finished

[2024-06-21	17:28:06]	Features:	15/17	--	score:	0.6585255540479421[Parallel(n_jobs=-1)]:	Using	backend	LokyBacken
d	with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			2	out	of			2	|	elapsed:				0.2s	finished

[2024-06-21	17:28:06]	Features:	16/17	--	score:	0.6554952510176391[Parallel(n_jobs=-1)]:	Using	backend	LokyBacken
d	with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			1	out	of			1	|	elapsed:				0.3s	finished

[2024-06-21	17:28:06]	Features:	17/17	--	score:	0.6373134328358209

We	can	see	that	performance	increases	till	the	6th	feature	and	then	became	constant,	and	the	performance	increased	again	after	the
addition	11th	feature.	One	of	the	reasons	for	such	an	increase	can	be	the	interaction	of	variables.
The	decision	to	choose	the	k_features	now	depends	on	the	recall	score	vs	the	complexity	of	the	model	-	with	6	features	we	are	getting	a
0.63	recall	score	and	with	11	features	we	will	get	a	0.66	recall	score.
The	increase	in	recall	score	is	not	much	significant	as	we	are	getting	the	same	values	with	a	less	complex	model.
So	we'll	use	6	features	only	to	build	our	mode	but	it	depends	on	the	business	context	and	use	case	of	the	model.

[Parallel(n_jobs=-1)]:	Using	backend	LokyBackend	with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			7	out	of		17	|	elapsed:				0.1s	remaining:				0.1s
[Parallel(n_jobs=-1)]:	Done		17	out	of		17	|	elapsed:				0.1s	finished

[2024-06-21	17:28:07]	Features:	1/6	--	score:	0.32623247399366806[Parallel(n_jobs=-1)]:	Using	backend	LokyBackend	

fig1	=	plot_sfs(sfs.get_metric_dict(),	kind="std_dev",	figsize=(12,	5))
plt.ylim([0.4,	1])
plt.title("Sequential	Forward	Selection	(w.	StdDev)")
plt.xticks(rotation=90)
plt.show()

sfs1	=	SFS(
				model,
				k_features=6,
				forward=True,
				floating=False,
				scoring="recall",
				verbose=2,
				cv=5,
				n_jobs=-1,
)

sfs1	=	sfs1.fit(X_train,	y_train)

fig1	=	plot_sfs(sfs1.get_metric_dict(),	kind="std_dev",	figsize=(10,	5))

plt.ylim([0.4,	1])
plt.title("Sequential	Forward	Selection	(w.	StdDev)")
plt.grid()
plt.show()



with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			6	out	of		16	|	elapsed:				0.2s	remaining:				0.3s
[Parallel(n_jobs=-1)]:	Done		16	out	of		16	|	elapsed:				0.4s	finished

[2024-06-21	17:28:07]	Features:	2/6	--	score:	0.4379466304839439[Parallel(n_jobs=-1)]:	Using	backend	LokyBackend	
with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			4	out	of		15	|	elapsed:				0.2s	remaining:				0.6s
[Parallel(n_jobs=-1)]:	Done		12	out	of		15	|	elapsed:				0.4s	remaining:				0.1s
[Parallel(n_jobs=-1)]:	Done		15	out	of		15	|	elapsed:				0.4s	finished

[2024-06-21	17:28:07]	Features:	3/6	--	score:	0.48946178199909546[Parallel(n_jobs=-1)]:	Using	backend	LokyBackend	
with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			3	out	of		14	|	elapsed:				0.2s	remaining:				0.8s
[Parallel(n_jobs=-1)]:	Done		11	out	of		14	|	elapsed:				0.4s	remaining:				0.1s
[Parallel(n_jobs=-1)]:	Done		14	out	of		14	|	elapsed:				0.4s	finished

[2024-06-21	17:28:08]	Features:	4/6	--	score:	0.6344188150158299[Parallel(n_jobs=-1)]:	Using	backend	LokyBackend	
with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			8	out	of		13	|	elapsed:				0.2s	remaining:				0.1s
[Parallel(n_jobs=-1)]:	Done		13	out	of		13	|	elapsed:				0.4s	finished

[2024-06-21	17:28:08]	Features:	5/6	--	score:	0.6374038896426957[Parallel(n_jobs=-1)]:	Using	backend	LokyBackend	
with	10	concurrent	workers.
[Parallel(n_jobs=-1)]:	Done			7	out	of		12	|	elapsed:				0.2s	remaining:				0.2s
[Parallel(n_jobs=-1)]:	Done		12	out	of		12	|	elapsed:				0.4s	finished

[2024-06-21	17:28:08]	Features:	6/6	--	score:	0.6374038896426957

Finding	which	features	are	important

[1,	2,	7,	8,	15,	16]

Let's	look	at	best	6	variables

Index(['Income',	'Family',	'Online',	'CreditCard',	'Education_Graduate',
							'Education_Professional'],
						dtype='object')

feat_cols	=	list(sfs1.k_feature_idx_)
print(feat_cols)

X_train2.columns[feat_cols]

X_train_final	=	X_train2[X_train2.columns[feat_cols]]

#	Creating	new	x_test	with	the	same	variables	that	we	selected	for	x_train
X_test_final	=	X_test2[X_train_final.columns]

#	Fitting	logistic	regession	model



LogisticRegression(random_state=1,	solver='newton-cg')

Checking	the	performance	on	training	set

Training	performance:
Accuracy Recall Precision F1

0 0.95286 0.64048 0.82171 0.71986

Let's	check	the	performance	on	the	test	set

Using	model	with	default	threshold

#	Fitting	logistic	regession	model

logreg	=	LogisticRegression(solver="newton-cg",	random_state=1)

logreg.fit(X_train_final,	y_train2)

#	creating	confusion	matrix
confusion_matrix_sklearn_with_threshold(logreg,	X_train_final,	y_train2)

log_reg_model_train_perf_SFS	=	model_performance_classification_sklearn_with_threshold(
				logreg,	X_train_final,	y_train2
)

print("Training	performance:")
log_reg_model_train_perf_SFS

#	creating	confusion	matrix
confusion_matrix_sklearn_with_threshold(lg,	X_test,	y_test)

log_reg_model_test_perf	=	model_performance_classification_sklearn_with_threshold(
				lg,	X_test,	y_test



Test	performance:
Accuracy Recall Precision F1

0 0.95733 0.63087 0.91262 0.74603

ROC	curve	on	test	set

Using	model	with	threshold=0.11

)

print("Test	performance:")
log_reg_model_test_perf

logit_roc_auc_test	=	roc_auc_score(y_test,	lg.predict_proba(X_test)[:,	1])
fpr,	tpr,	thresholds	=	roc_curve(y_test,	lg.predict_proba(X_test)[:,	1])
plt.figure(figsize=(7,	5))
plt.plot(fpr,	tpr,	label="Logistic	Regression	(area	=	%0.2f)"	%	logit_roc_auc_test)
plt.plot([0,	1],	[0,	1],	"r--")
plt.xlim([0.0,	1.0])
plt.ylim([0.0,	1.05])
plt.xlabel("False	Positive	Rate")
plt.ylabel("True	Positive	Rate")
plt.title("Receiver	operating	characteristic")
plt.legend(loc="lower	right")
plt.show()

#	creating	confusion	matrix
confusion_matrix_sklearn_with_threshold(
				lg,	X_test,	y_test,	threshold=optimal_threshold_auc_roc
)

#	checking	model	performance	for	this	model
log_reg_model_test_perf_threshold_auc_roc	=	model_performance_classification_sklearn_with_threshold(



Test	performance:
Accuracy Recall Precision F1

0 0.91133 0.85906 0.53333 0.65810

Using	model	with	threshold	=	0.27

Test	performance:
Accuracy Recall Precision F1

0 0.95067 0.70470 0.77778 0.73944

Using	SFS

				lg,	X_test,	y_test,	threshold=optimal_threshold_auc_roc
)
print("Test	performance:")
log_reg_model_test_perf_threshold_auc_roc

#	creating	confusion	matrix
confusion_matrix_sklearn_with_threshold(
				lg,	X_test,	y_test,	threshold=optimal_threshold_curve
)

log_reg_model_test_perf_threshold_curve	=	model_performance_classification_sklearn_with_threshold(
				lg,	X_test,	y_test,	threshold=optimal_threshold_curve
)
print("Test	performance:")
log_reg_model_test_perf_threshold_curve

#	creating	confusion	matrix
confusion_matrix_sklearn_with_threshold(logreg,	X_test_final,	y_test2)

log_reg_model_test_perf_SFS	=	model_performance_classification_sklearn_with_threshold(



Test	performance:

Accuracy Recall Precision F1

0 0.95267 0.59732 0.89000 0.71486

Model	performance	summary

Training	performance	comparison:
Logistic	Regression	sklearn Logistic	Regression-0.11	Threshold Logistic	Regression-0.27	Threshold Logistic	Regression	-	SFS

Accuracy 0.95657 0.91429 0.95600 0.95286

Recall 0.64350 0.89426 0.76737 0.64048

Precision 0.86235 0.52763 0.76737 0.82171

F1 0.73702 0.66368 0.76737 0.71986

Test	set	performance	comparison:
Logistic	Regression	sklearn Logistic	Regression-0.11	Threshold Logistic	Regression-0.27	Threshold Logistic	Regression	-	SFS

Accuracy 0.95733 0.91133 0.95067 0.95267

Recall 0.63087 0.85906 0.70470 0.59732

Precision 0.91262 0.53333 0.77778 0.89000

F1 0.74603 0.65810 0.73944 0.71486

log_reg_model_test_perf_SFS	=	model_performance_classification_sklearn_with_threshold(
				logreg,	X_test_final,	y_test2
)

print("Test	performance:")
log_reg_model_test_perf_SFS

#	training	performance	comparison

models_train_comp_df	=	pd.concat(
				[
								log_reg_model_train_perf.T,
								log_reg_model_train_perf_threshold_auc_roc.T,
								log_reg_model_train_perf_threshold_curve.T,
								log_reg_model_train_perf_SFS.T,
				],
				axis=1,
)
models_train_comp_df.columns	=	[
				"Logistic	Regression	sklearn",
				"Logistic	Regression-0.11	Threshold",
				"Logistic	Regression-0.27	Threshold",
				"Logistic	Regression	-	SFS",
]

print("Training	performance	comparison:")
models_train_comp_df

#	testing	performance	comparison

models_test_comp_df	=	pd.concat(
				[
								log_reg_model_test_perf.T,
								log_reg_model_test_perf_threshold_auc_roc.T,
								log_reg_model_test_perf_threshold_curve.T,
								log_reg_model_test_perf_SFS.T,
				],
				axis=1,
)
models_test_comp_df.columns	=	[
				"Logistic	Regression	sklearn",
				"Logistic	Regression-0.11	Threshold",
				"Logistic	Regression-0.27	Threshold",
				"Logistic	Regression	-	SFS",
]

print("Test	set	performance	comparison:")
models_test_comp_df



Conclusion

We	have	been	able	to	build	a	predictive	model	that	can	be	used	by	the	bank	to	find	the	potential	customers	who	will	be	willing	to	take	a
personal	loan	with	recall	of	0.89	on	the	training	set	and	formulate	marketing	policies	accordingly.

The	logistic	regression	models	are	giving	a	generalized	performance	on	training	and	test	set.

Using	the	model	with	default	threshold	the	model	will	give	a	low	recall	but	good	precision	score	-	This	model	will	help	the	bank	save
resources	but	lose	on	potential	customers.

Using	the	model	with	0.11	threshold	the	model	will	give	a	high	recall	but	low	precision	score	-	This	model	will	help	the	bank	identify
potential	customers	effectively	but	the	cost	of	resources	will	be	high.
Using	the	model	with	0.27	threshold	the	model	will	give	a	balance	recall	and	precision	score	-	This	model	will	help	the	bank	to	maintain	a
balance	in	identifying	potential	customer	and	the	cost	of	resources.
The	model	obtained	after	SFS	gives	a	similar	performance	as	initial	model	but	with	less	number	of	variables.

Coefficients	of	Age,	Income,	Family,	CCAvg,	CD_Account,	and	Education,	and	some	levels	of	ZIPCode	are	positive	an	increase	in	these
will	lead	to	an	increase	in	chances	of	taking	a	personal	loan.

Coefficients	of	Securities_Account,	CreditCard,	Online,	and	some	levels	of	ZIPCode	are	negative	an	increase	in	these	will	lead	to	a
decrease	in	chances	of	taking	a	personal	loan.

Decision	Tree

First,	let's	create	functions	to	calculate	different	metrics	and	confusion	matrix	so	that	we	don't	have	to	use	the	same
code	repeatedly	for	each	model.

The	model_performance_classification_sklearn	function	will	be	used	to	check	the	model	performance	of	models.
The	confusion_matrix_sklearnfunction	will	be	used	to	plot	confusion	matrix.

#	defining	a	function	to	compute	different	metrics	to	check	performance	of	a	classification	model	built	using	sklearn
def	model_performance_classification_sklearn(model,	predictors,	target):
				"""
				Function	to	compute	different	metrics	to	check	classification	model	performance

				model:	classifier
				predictors:	independent	variables
				target:	dependent	variable
				"""

				#	predicting	using	the	independent	variables
				pred	=	model.predict(predictors)

				acc	=	accuracy_score(target,	pred)		#	to	compute	Accuracy
				recall	=	recall_score(target,	pred)		#	to	compute	Recall
				precision	=	precision_score(target,	pred)		#	to	compute	Precision
				f1	=	f1_score(target,	pred)		#	to	compute	F1-score

				#	creating	a	dataframe	of	metrics
				df_perf	=	pd.DataFrame(
								{"Accuracy":	acc,	"Recall":	recall,	"Precision":	precision,	"F1":	f1,},
								index=[0],
				)

				return	df_perf

def	confusion_matrix_sklearn(model,	predictors,	target):
				"""
				To	plot	the	confusion_matrix	with	percentages

				model:	classifier
				predictors:	independent	variables
				target:	dependent	variable
				"""
				y_pred	=	model.predict(predictors)
				cm	=	confusion_matrix(target,	y_pred)
				labels	=	np.asarray(
								[
												["{0:0.0f}".format(item)	+	"\n{0:.2%}".format(item	/	cm.flatten().sum())]
												for	item	in	cm.flatten()
								]



Build	Decision	Tree	Model

DecisionTreeClassifier(random_state=1)

Checking	model	performance	on	training	set

Accuracy Recall Precision F1

0 1.00000 1.00000 1.00000 1.00000

0	errors	on	the	training	set,	each	sample	has	been	classified	correctly.
Model	has	performed	very	well	on	training	set.
As	we	know	a	decision	tree	will	continue	to	grow	and	classify	each	data	point	correctly	if	no	restrictions	are	applied	as	the	trees	will	learn
all	the	patterns	in	the	training	set.

Visualizing	the	Decision	Tree

['Age',	'Income',	'Family',	'CCAvg',	'Mortgage',	'Securities_Account',	'CD_Account',	'Online',	'CreditCard',	'ZIP
Code_91',	'ZIPCode_92',	'ZIPCode_93',	'ZIPCode_94',	'ZIPCode_95',	'ZIPCode_96',	'Education_Graduate',	'Education_
Professional']

				).reshape(2,	2)

				plt.figure(figsize=(6,	4))
				sns.heatmap(cm,	annot=labels,	fmt="")
				plt.ylabel("True	label")
				plt.xlabel("Predicted	label")

model	=	DecisionTreeClassifier(criterion="gini",	random_state=1)
model.fit(X_train,	y_train)

confusion_matrix_sklearn(model,	X_train,	y_train)

decision_tree_perf_train	=	model_performance_classification_sklearn(
				model,	X_train,	y_train
)
decision_tree_perf_train

feature_names	=	list(X_train.columns)
print(feature_names)

plt.figure(figsize=(20,	30))
out	=	tree.plot_tree(
				model,
				feature_names=feature_names,



				filled=True,
				fontsize=9,
				node_ids=False,
				class_names=None,
)
#	below	code	will	add	arrows	to	the	decision	tree	split	if	they	are	missing
for	o	in	out:
				arrow	=	o.arrow_patch
				if	arrow	is	not	None:
								arrow.set_edgecolor("black")
								arrow.set_linewidth(1)
plt.show()



|---	Income	<=	116.50
|			|---	CCAvg	<=	2.95
|			|			|---	Income	<=	106.50
|			|			|			|---	weights:	[2553.00,	0.00]	class:	0
|			|			|---	Income	>		106.50
|			|			|			|---	Family	<=	3.50
|			|			|			|			|---	ZIPCode_93	<=	0.50
|			|			|			|			|			|---	Age	<=	28.50
|			|			|			|			|			|			|---	Education_Graduate	<=	0.50
|			|			|			|			|			|			|			|---	weights:	[5.00,	0.00]	class:	0
|			|			|			|			|			|			|---	Education_Graduate	>		0.50
|			|			|			|			|			|			|			|---	weights:	[0.00,	1.00]	class:	1
|			|			|			|			|			|---	Age	>		28.50
|			|			|			|			|			|			|---	CCAvg	<=	2.20
|			|			|			|			|			|			|			|---	weights:	[48.00,	0.00]	class:	0
|			|			|			|			|			|			|---	CCAvg	>		2.20
|			|			|			|			|			|			|			|---	Education_Professional	<=	0.50
|			|			|			|			|			|			|			|			|---	weights:	[7.00,	0.00]	class:	0
|			|			|			|			|			|			|			|---	Education_Professional	>		0.50
|			|			|			|			|			|			|			|			|---	weights:	[0.00,	1.00]	class:	1
|			|			|			|			|---	ZIPCode_93	>		0.50
|			|			|			|			|			|---	Age	<=	37.50
|			|			|			|			|			|			|---	weights:	[2.00,	0.00]	class:	0
|			|			|			|			|			|---	Age	>		37.50
|			|			|			|			|			|			|---	Income	<=	112.00
|			|			|			|			|			|			|			|---	weights:	[0.00,	1.00]	class:	1
|			|			|			|			|			|			|---	Income	>		112.00
|			|			|			|			|			|			|			|---	weights:	[1.00,	0.00]	class:	0
|			|			|			|---	Family	>		3.50
|			|			|			|			|---	Age	<=	32.50
|			|			|			|			|			|---	CCAvg	<=	2.40
|			|			|			|			|			|			|---	weights:	[12.00,	0.00]	class:	0
|			|			|			|			|			|---	CCAvg	>		2.40
|			|			|			|			|			|			|---	weights:	[0.00,	1.00]	class:	1
|			|			|			|			|---	Age	>		32.50
|			|			|			|			|			|---	Age	<=	60.00
|			|			|			|			|			|			|---	weights:	[0.00,	6.00]	class:	1
|			|			|			|			|			|---	Age	>		60.00
|			|			|			|			|			|			|---	weights:	[4.00,	0.00]	class:	0
|			|---	CCAvg	>		2.95
|			|			|---	Income	<=	92.50
|			|			|			|---	CD_Account	<=	0.50
|			|			|			|			|---	Age	<=	26.50
|			|			|			|			|			|---	weights:	[0.00,	1.00]	class:	1
|			|			|			|			|---	Age	>		26.50
|			|			|			|			|			|---	CCAvg	<=	3.55
|			|			|			|			|			|			|---	CCAvg	<=	3.35
|			|			|			|			|			|			|			|---	Age	<=	37.50
|			|			|			|			|			|			|			|			|---	Age	<=	33.50
|			|			|			|			|			|			|			|			|			|---	weights:	[3.00,	0.00]	class:	0
|			|			|			|			|			|			|			|			|---	Age	>		33.50
|			|			|			|			|			|			|			|			|			|---	weights:	[0.00,	1.00]	class:	1
|			|			|			|			|			|			|			|---	Age	>		37.50
|			|			|			|			|			|			|			|			|---	Income	<=	82.50
|			|			|			|			|			|			|			|			|			|---	weights:	[23.00,	0.00]	class:	0
|			|			|			|			|			|			|			|			|---	Income	>		82.50
|			|			|			|			|			|			|			|			|			|---	Income	<=	83.50
|			|			|			|			|			|			|			|			|			|			|---	weights:	[0.00,	1.00]	class:	1
|			|			|			|			|			|			|			|			|			|---	Income	>		83.50
|			|			|			|			|			|			|			|			|			|			|---	weights:	[5.00,	0.00]	class:	0
|			|			|			|			|			|			|---	CCAvg	>		3.35
|			|			|			|			|			|			|			|---	Family	<=	3.00
|			|			|			|			|			|			|			|			|---	weights:	[0.00,	5.00]	class:	1
|			|			|			|			|			|			|			|---	Family	>		3.00
|			|			|			|			|			|			|			|			|---	weights:	[9.00,	0.00]	class:	0
|			|			|			|			|			|---	CCAvg	>		3.55
|			|			|			|			|			|			|---	Income	<=	81.50
|			|			|			|			|			|			|			|---	weights:	[43.00,	0.00]	class:	0
|			|			|			|			|			|			|---	Income	>		81.50
|			|			|			|			|			|			|			|---	Education_Graduate	<=	0.50
|			|			|			|			|			|			|			|			|---	Mortgage	<=	93.50
|			|			|			|			|			|			|			|			|			|---	weights:	[26.00,	0.00]	class:	0
|			|			|			|			|			|			|			|			|---	Mortgage	>		93.50

#	Text	report	showing	the	rules	of	a	decision	tree	-

print(tree.export_text(model,	feature_names=feature_names,	show_weights=True))



|			|			|			|			|			|			|			|			|			|---	Mortgage	<=	104.50
|			|			|			|			|			|			|			|			|			|			|---	weights:	[0.00,	1.00]	class:	1
|			|			|			|			|			|			|			|			|			|---	Mortgage	>		104.50
|			|			|			|			|			|			|			|			|			|			|---	weights:	[6.00,	0.00]	class:	0
|			|			|			|			|			|			|			|---	Education_Graduate	>		0.50
|			|			|			|			|			|			|			|			|---	ZIPCode_91	<=	0.50
|			|			|			|			|			|			|			|			|			|---	Family	<=	3.50
|			|			|			|			|			|			|			|			|			|			|---	weights:	[0.00,	1.00]	class:	1
|			|			|			|			|			|			|			|			|			|---	Family	>		3.50
|			|			|			|			|			|			|			|			|			|			|---	weights:	[1.00,	0.00]	class:	0
|			|			|			|			|			|			|			|			|---	ZIPCode_91	>		0.50
|			|			|			|			|			|			|			|			|			|---	weights:	[1.00,	0.00]	class:	0
|			|			|			|---	CD_Account	>		0.50
|			|			|			|			|---	weights:	[0.00,	5.00]	class:	1
|			|			|---	Income	>		92.50
|			|			|			|---	Family	<=	2.50
|			|			|			|			|---	Education_Graduate	<=	0.50
|			|			|			|			|			|---	Education_Professional	<=	0.50
|			|			|			|			|			|			|---	CD_Account	<=	0.50
|			|			|			|			|			|			|			|---	Age	<=	56.50
|			|			|			|			|			|			|			|			|---	weights:	[27.00,	0.00]	class:	0
|			|			|			|			|			|			|			|---	Age	>		56.50
|			|			|			|			|			|			|			|			|---	Online	<=	0.50
|			|			|			|			|			|			|			|			|			|---	weights:	[0.00,	1.00]	class:	1
|			|			|			|			|			|			|			|			|---	Online	>		0.50
|			|			|			|			|			|			|			|			|			|---	weights:	[2.00,	0.00]	class:	0
|			|			|			|			|			|			|---	CD_Account	>		0.50
|			|			|			|			|			|			|			|---	Securities_Account	<=	0.50
|			|			|			|			|			|			|			|			|---	weights:	[1.00,	0.00]	class:	0
|			|			|			|			|			|			|			|---	Securities_Account	>		0.50
|			|			|			|			|			|			|			|			|---	weights:	[0.00,	2.00]	class:	1
|			|			|			|			|			|---	Education_Professional	>		0.50
|			|			|			|			|			|			|---	ZIPCode_94	<=	0.50
|			|			|			|			|			|			|			|---	Income	<=	107.00
|			|			|			|			|			|			|			|			|---	weights:	[7.00,	0.00]	class:	0
|			|			|			|			|			|			|			|---	Income	>		107.00
|			|			|			|			|			|			|			|			|---	weights:	[0.00,	2.00]	class:	1
|			|			|			|			|			|			|---	ZIPCode_94	>		0.50
|			|			|			|			|			|			|			|---	weights:	[0.00,	5.00]	class:	1
|			|			|			|			|---	Education_Graduate	>		0.50
|			|			|			|			|			|---	weights:	[0.00,	4.00]	class:	1
|			|			|			|---	Family	>		2.50
|			|			|			|			|---	Age	<=	57.50
|			|			|			|			|			|---	CCAvg	<=	4.85
|			|			|			|			|			|			|---	weights:	[0.00,	17.00]	class:	1
|			|			|			|			|			|---	CCAvg	>		4.85
|			|			|			|			|			|			|---	CCAvg	<=	4.95
|			|			|			|			|			|			|			|---	weights:	[1.00,	0.00]	class:	0
|			|			|			|			|			|			|---	CCAvg	>		4.95
|			|			|			|			|			|			|			|---	weights:	[0.00,	3.00]	class:	1
|			|			|			|			|---	Age	>		57.50
|			|			|			|			|			|---	ZIPCode_93	<=	0.50
|			|			|			|			|			|			|---	ZIPCode_94	<=	0.50
|			|			|			|			|			|			|			|---	weights:	[5.00,	0.00]	class:	0
|			|			|			|			|			|			|---	ZIPCode_94	>		0.50
|			|			|			|			|			|			|			|---	Age	<=	59.50
|			|			|			|			|			|			|			|			|---	weights:	[0.00,	1.00]	class:	1
|			|			|			|			|			|			|			|---	Age	>		59.50
|			|			|			|			|			|			|			|			|---	weights:	[2.00,	0.00]	class:	0
|			|			|			|			|			|---	ZIPCode_93	>		0.50
|			|			|			|			|			|			|---	weights:	[0.00,	2.00]	class:	1
|---	Income	>		116.50
|			|---	Family	<=	2.50
|			|			|---	Education_Professional	<=	0.50
|			|			|			|---	Education_Graduate	<=	0.50
|			|			|			|			|---	weights:	[375.00,	0.00]	class:	0
|			|			|			|---	Education_Graduate	>		0.50
|			|			|			|			|---	weights:	[0.00,	53.00]	class:	1
|			|			|---	Education_Professional	>		0.50
|			|			|			|---	weights:	[0.00,	62.00]	class:	1
|			|---	Family	>		2.50
|			|			|---	weights:	[0.00,	154.00]	class:	1

#	importance	of	features	in	the	tree	building	(	The	importance	of	a	feature	is	computed	as	the
#	(normalized)	total	reduction	of	the	criterion	brought	by	that	feature.	It	is	also	known	as	the	Gini	importance	)

print(
				pd.DataFrame(
								model.feature_importances_,	columns=["Imp"],	index=X_train.columns



																											Imp
Income																	0.30810
Family																	0.25926
Education_Graduate					0.16619
Education_Professional	0.14713
CCAvg																		0.04880
Age																				0.03315
CD_Account													0.01727
ZIPCode_94													0.00718
ZIPCode_93													0.00468
Mortgage															0.00324
Online																	0.00222
Securities_Account					0.00222
ZIPCode_91													0.00056
ZIPCode_92													0.00000
ZIPCode_95													0.00000
ZIPCode_96													0.00000
CreditCard													0.00000

Income	is	the	most	important	feature	followed	by	family	and	education.
The	tree	above	is	very	complex	and	difficult	to	interpret.
Let's	prune	the	tree	to	see	if	we	can	reduce	the	complexity.

Model	Improvement

Pre-Pruning

				).sort_values(by="Imp",	ascending=False)
)

importances	=	model.feature_importances_
indices	=	np.argsort(importances)

plt.figure(figsize=(8,	8))
plt.title("Feature	Importances")
plt.barh(range(len(indices)),	importances[indices],	color="violet",	align="center")
plt.yticks(range(len(indices)),	[feature_names[i]	for	i	in	indices])
plt.xlabel("Relative	Importance")
plt.show()

#	Choose	the	type	of	classifier.
estimator	=	DecisionTreeClassifier(random_state=1)



DecisionTreeClassifier(max_depth=6,	max_leaf_nodes=10,	min_samples_leaf=10,
																							random_state=1)

Checking	performance	on	training	set

Accuracy Recall Precision F1

0 0.98771 0.87311 0.99655 0.93076

Visualizing	the	Decision	Tree

#	Grid	of	parameters	to	choose	from
parameters	=	{
				"max_depth":	np.arange(6,	15),
				"min_samples_leaf":	[1,	2,	5,	7,	10],
				"max_leaf_nodes":	[2,	3,	5,	10],
}

#	Type	of	scoring	used	to	compare	parameter	combinations
acc_scorer	=	make_scorer(recall_score)

#	Run	the	grid	search
grid_obj	=	GridSearchCV(estimator,	parameters,	scoring=acc_scorer,	cv=5)
grid_obj	=	grid_obj.fit(X_train,	y_train)

#	Set	the	clf	to	the	best	combination	of	parameters
estimator	=	grid_obj.best_estimator_

#	Fit	the	best	algorithm	to	the	data.
estimator.fit(X_train,	y_train)

confusion_matrix_sklearn(estimator,	X_train,	y_train)

decision_tree_tune_perf_train	=	model_performance_classification_sklearn(
				estimator,	X_train,	y_train
)
decision_tree_tune_perf_train

plt.figure(figsize=(10,	10))
out	=	tree.plot_tree(
				estimator,
				feature_names=feature_names,
				filled=True,
				fontsize=9,
				node_ids=False,
				class_names=None,
)
#	below	code	will	add	arrows	to	the	decision	tree	split	if	they	are	missing
for	o	in	out:
				arrow	=	o.arrow_patch
				if	arrow	is	not	None:
								arrow.set_edgecolor("black")
								arrow.set_linewidth(1)
plt.show()



|---	Income	<=	116.50
|			|---	CCAvg	<=	2.95
|			|			|---	Income	<=	106.50
|			|			|			|---	weights:	[2553.00,	0.00]	class:	0
|			|			|---	Income	>		106.50
|			|			|			|---	weights:	[79.00,	10.00]	class:	0
|			|---	CCAvg	>		2.95
|			|			|---	Income	<=	92.50
|			|			|			|---	weights:	[117.00,	15.00]	class:	0
|			|			|---	Income	>		92.50
|			|			|			|---	Family	<=	2.50
|			|			|			|			|---	weights:	[37.00,	14.00]	class:	0
|			|			|			|---	Family	>		2.50
|			|			|			|			|---	Age	<=	57.50
|			|			|			|			|			|---	weights:	[1.00,	20.00]	class:	1
|			|			|			|			|---	Age	>		57.50
|			|			|			|			|			|---	weights:	[7.00,	3.00]	class:	0
|---	Income	>		116.50
|			|---	Family	<=	2.50
|			|			|---	Education_Professional	<=	0.50
|			|			|			|---	Education_Graduate	<=	0.50
|			|			|			|			|---	weights:	[375.00,	0.00]	class:	0
|			|			|			|---	Education_Graduate	>		0.50
|			|			|			|			|---	weights:	[0.00,	53.00]	class:	1
|			|			|---	Education_Professional	>		0.50
|			|			|			|---	weights:	[0.00,	62.00]	class:	1
|			|---	Family	>		2.50
|			|			|---	weights:	[0.00,	154.00]	class:	1

Observations

We	can	see	that	the	tree	has	become	simpler	and	more	readable.
The	model	performance	has	decreased	but	a	recall	of	0.87	is	still	satisfactory.

#	Text	report	showing	the	rules	of	a	decision	tree	-

print(tree.export_text(estimator,	feature_names=feature_names,	show_weights=True))

#	importance	of	features	in	the	tree	building	(	The	importance	of	a	feature	is	computed	as	the
#	(normalized)	total	reduction	of	the	criterion	brought	by	that	feature.	It	is	also	known	as	the	Gini	importance	)

print(
				pd.DataFrame(



																											Imp
Income																	0.30810
Family																	0.25926
Education_Graduate					0.16619
Education_Professional	0.14713
CCAvg																		0.04880
Age																				0.03315
CD_Account													0.01727
ZIPCode_94													0.00718
ZIPCode_93													0.00468
Mortgage															0.00324
Online																	0.00222
Securities_Account					0.00222
ZIPCode_91													0.00056
ZIPCode_92													0.00000
ZIPCode_95													0.00000
ZIPCode_96													0.00000
CreditCard													0.00000

Decision	tree	after	pre-pruning	has	given	similar	feature	importance	and	decision	rules.

Observations	from	decision	rules

Online,	CreditCard,	Securities_Account,	ZIPCode	have	very	little	importance,	Income	is	most	important	followed	by	Family	and
Education
People	with	Income	less	than	116.5k	dollars,	CCAvg	less	than	2.95,	and	Income	less	than	106.5k	dollars	have	fewer	chances	of	taking	a
Personal	Loan.
But	people	having	income	more	than	106.5,	Family	not	of	size	4,	age	less	than	28.50	and	Experience	greater	than	3.50	have	more
chances	of	taking	a	loan.
People	with	Income	greater	than	116.5,	are	undergraduate,	have	a	family	size	less	than	2	have	fewer	chances	of	buying	a	loan	while

								model.feature_importances_,	columns=["Imp"],	index=X_train.columns
				).sort_values(by="Imp",	ascending=False)
)

importances	=	estimator.feature_importances_
indices	=	np.argsort(importances)

plt.figure(figsize=(8,	8))
plt.title("Feature	Importances")
plt.barh(range(len(indices)),	importances[indices],	color="violet",	align="center")
plt.yticks(range(len(indices)),	[feature_names[i]	for	i	in	indices])
plt.xlabel("Relative	Importance")
plt.show()



People	with	a	family	size	greater	than	2,	and	education	level	more	than	undergraduate	has	more	chances	of	buying	a	loan.
So	bank	should	campaign	more	on	people	with	higher	income,	More	education,	and	larger	family	sizes

Cost	Complexity	Pruning

ccp_alphas impurities

0 0.00000 0.00000

1 0.00019 0.00111

2 0.00021 0.00154

3 0.00024 0.00275

4 0.00025 0.00325

5 0.00027 0.00432

6 0.00027 0.00487

7 0.00028 0.00542

8 0.00038 0.00580

9 0.00053 0.00633

10 0.00063 0.00695

11 0.00070 0.00765

12 0.00077 0.01073

13 0.00088 0.01426

14 0.00089 0.01515

15 0.00103 0.01720

16 0.00131 0.01851

17 0.00165 0.02015

18 0.00233 0.02249

19 0.00241 0.02489

20 0.00329 0.02819

21 0.00647 0.03466

22 0.02515 0.08495

23 0.03922 0.12417

24 0.04709 0.17126

clf	=	DecisionTreeClassifier(random_state=1)
path	=	clf.cost_complexity_pruning_path(X_train,	y_train)
ccp_alphas,	impurities	=	path.ccp_alphas,	path.impurities

pd.DataFrame(path)

fig,	ax	=	plt.subplots(figsize=(10,	5))
ax.plot(ccp_alphas[:-1],	impurities[:-1],	marker="o",	drawstyle="steps-post")
ax.set_xlabel("effective	alpha")
ax.set_ylabel("total	impurity	of	leaves")
ax.set_title("Total	Impurity	vs	effective	alpha	for	training	set")
plt.show()



Next,	we	train	a	decision	tree	using	effective	alphas.	The	last	value	in	 ccp_alphas 	is	the	alpha	value	that	prunes	the	whole	tree,	leaving
the	tree,	 clfs[-1] ,	with	one	node.

Number	of	nodes	in	the	last	tree	is:	1	with	ccp_alpha:	0.04708834100596766

For	the	remainder,	we	remove	the	last	element	in	 clfs 	and	 ccp_alphas ,	because	it	is	the	trivial	tree	with	only	one	node.	Here	we	show
that	the	number	of	nodes	and	tree	depth	decreases	as	alpha	increases.

Recall	vs	alpha	for	training	and	testing	sets

clfs	=	[]
for	ccp_alpha	in	ccp_alphas:
				clf	=	DecisionTreeClassifier(random_state=1,	ccp_alpha=ccp_alpha)
				clf.fit(X_train,	y_train)
				clfs.append(clf)
print(
				"Number	of	nodes	in	the	last	tree	is:	{}	with	ccp_alpha:	{}".format(
								clfs[-1].tree_.node_count,	ccp_alphas[-1]
				)
)

clfs	=	clfs[:-1]
ccp_alphas	=	ccp_alphas[:-1]

node_counts	=	[clf.tree_.node_count	for	clf	in	clfs]
depth	=	[clf.tree_.max_depth	for	clf	in	clfs]
fig,	ax	=	plt.subplots(2,	1,	figsize=(10,	7))
ax[0].plot(ccp_alphas,	node_counts,	marker="o",	drawstyle="steps-post")
ax[0].set_xlabel("alpha")
ax[0].set_ylabel("number	of	nodes")
ax[0].set_title("Number	of	nodes	vs	alpha")
ax[1].plot(ccp_alphas,	depth,	marker="o",	drawstyle="steps-post")
ax[1].set_xlabel("alpha")
ax[1].set_ylabel("depth	of	tree")
ax[1].set_title("Depth	vs	alpha")
fig.tight_layout()

recall_train	=	[]



DecisionTreeClassifier(random_state=1)

Post-pruning	using	ccp	alpha	returns	the	same	model	as	the	initial	model	(Tree	with	no	pruning).
As	post	pruning	model	is	the	same	as	the	initial	decision	tree	mode,	the	performance	and	feature	importance	will	also	be	the	same.

Let's	check	the	performance	on	test	set

Using	the	decision	tree	with	default	parameters

recall_train	=	[]
for	clf	in	clfs:
				pred_train	=	clf.predict(X_train)
				values_train	=	recall_score(y_train,	pred_train)
				recall_train.append(values_train)

recall_test	=	[]
for	clf	in	clfs:
				pred_test	=	clf.predict(X_test)
				values_test	=	recall_score(y_test,	pred_test)
				recall_test.append(values_test)

fig,	ax	=	plt.subplots(figsize=(15,	5))
ax.set_xlabel("alpha")
ax.set_ylabel("Recall")
ax.set_title("Recall	vs	alpha	for	training	and	testing	sets")
ax.plot(ccp_alphas,	recall_train,	marker="o",	label="train",	drawstyle="steps-post")
ax.plot(ccp_alphas,	recall_test,	marker="o",	label="test",	drawstyle="steps-post")
ax.legend()
plt.show()

index_best_model	=	np.argmax(recall_test)
best_model	=	clfs[index_best_model]
print(best_model)

confusion_matrix_sklearn(model,	X_test,	y_test)



Accuracy Recall Precision F1

0 0.98600 0.93289 0.92667 0.92977

Using	the	hyperparameter	tuned	decision	tree

Accuracy Recall Precision F1

0 0.97867 0.78523 1.00000 0.87970

Comparing	Decision	Tree	models

Training	performance	comparison:

Decision	Tree	sklearn Decision	Tree	(Pre-Pruning)

Accuracy 1.00000 0.98771

Recall 1.00000 0.87311

Precision 1.00000 0.99655

F1 1.00000 0.93076

decision_tree_perf_test	=	model_performance_classification_sklearn(
				model,	X_test,	y_test
)
decision_tree_perf_test

confusion_matrix_sklearn(estimator,	X_test,	y_test)

decision_tree_tune_perf_test	=	model_performance_classification_sklearn(
				estimator,	X_test,	y_test
)
decision_tree_tune_perf_test

#	training	performance	comparison

models_train_comp_df	=	pd.concat(
				[decision_tree_perf_train.T,	decision_tree_tune_perf_train.T],	axis=1,
)
models_train_comp_df.columns	=	["Decision	Tree	sklearn",	"Decision	Tree	(Pre-Pruning)"]
print("Training	performance	comparison:")
models_train_comp_df

#	testing	performance	comparison

models_test_comp_df	=	pd.concat(
				[decision_tree_perf_test.T,	decision_tree_tune_perf_test.T],	axis=1,



Test	set	performance	comparison:

Decision	Tree	sklearn Decision	Tree	(Pre-Pruning)

Accuracy 0.98600 0.97867

Recall 0.93289 0.78523

Precision 0.92667 1.00000

F1 0.92977 0.87970

Conclusion

Overall	we	can	see	that	the	Decision	tree	performs	better	on	the	dataset
Looking	at	important	variables	based	on	p-values	in	Logistic	regression	and	Feature	importance	in	Decision	trees

Income,	CCAvg,	CD_Account,	Family,	Education	are	important	in	Both
From	the	Logistic	Regression	model	we	observe	that	the	above-mentioned	attributes	have	a	positive	relationship	with	Personal
Loan.

Business	Recommendations

We	have	been	able	to	build	a	predictive	model:

a)	that	the	bank	can	deploy	to	identify	customers	who	will	be	interested	in	taking	a	personal	loan.

b)	that	the	bank	can	use	to	find	the	key	factors	that	will	have	an	impact	on	a	customer	taking	a	personal	loan	or	not.

Factors	that	have	an	impact	on	Personal_Loan:	Income,	Family,	Education.

Higher	income	customers	should	be	the	target	customers	for	the	bank	-	Customers	who	have	income	above	116k	dollars	and	a	family	of
more	than	2,	such	customers	have	higher	chances	of	taking	personal	loans.

Higher	education	higher	are	the	chances	to	take	a	loan	-	Customers	who	are	more	educated	(education	level	greater	than
undergraduate)	have	a	higher	chance	of	taking	a	personal	loan.

Size	of	the	family	has	a	positive	correlation	with	the	personal	loan,	as	the	size	of	the	family	increases	(generally	a	family	size	of	3	or
more	than	3	members)	have	more	chances	of	a	customer	taking	a	personal	loan.

Our	analysis	showed	that	~50%	of	the	customers	who	have	the	certificate	of	deposit	with	the	bank	(CD_Account)	are	the	ones	that	have
the	requirement	of	Personal	Loan	-	Bank	should	target	such	customers.

Misclassification	analysis	(Additional)

To	check	whether	there	is	any	certain	pattern	followed	by	samples	that	are	incorrectly	classified	by	our	model	(dTree).

)
models_test_comp_df.columns	=	["Decision	Tree	sklearn",	"Decision	Tree	(Pre-Pruning)"]
print("Test	set	performance	comparison:")
models_test_comp_df

data["ZIPCode"]	=	data["ZIPCode"].astype("category")

X	=	data.drop(["Personal_Loan",	"Experience"],	axis=1)
Y	=	data[["Personal_Loan"]]

X	=	pd.get_dummies(X,	columns=["ZIPCode",	"Education"],	drop_first=True)

#	Splitting	data	in	train	and	test	sets
X_train,	X_test,	y_train,	y_test	=	train_test_split(
				X,	Y,	test_size=0.30,	random_state=1
)
Y1	=	model.predict(X_test)
Y1	=	Y1.reshape(1500,	1)

Y2	=	np.subtract(y_test.astype("int"),	Y1)

#	1	says,	Perosn	would	buy	loan	but	model	predicted	he	won't
#	-1	says,	Perosn	won't	buy	loan	but	model	predicted	he	would

#	Let's	concatenate	this	Y2	with	X
data1	=	pd.DataFrame(Y2)
data2	=	pd.concat([X_test,	data1],	axis=1)



(21,	18)

Age Income Family CCAvg Mortgage Securities_Account CD_Account Online CreditCard ZIPCode_91 ZIPCode_92 ZIPCode_93 ZIPCode_94

927 65 95 3 3.70000 138 0 0 0 1 0 0 0

1518 43 64 4 3.00000 221 0 0 1 0 0 0 0

12 48 114 2 3.80000 0 1 0 0 0 0 0 1

2030 63 111 2 3.90000 207 1 1 1 1 0 0 0

4575 53 115 2 0.50000 0 0 0 0 0 0 0 0

4229 54 83 1 3.00000 0 0 0 0 0 0 0 0

4571 58 95 1 3.00000 0 0 0 0 0 0 0 0

1559 59 102 4 3.00000 115 0 0 1 0 0 1 0

2098 59 94 1 3.80000 272 0 0 0 0 0 0 0

1126 32 104 2 3.70000 0 0 0 0 1 0 0 0

123 37 84 1 3.60000 0 1 0 0 0 0 1 0

2361 36 109 3 0.50000 0 1 1 1 0 0 0 0

2349 59 94 1 4.30000 76 1 1 1 0 0 0 0

3308 48 108 2 3.80000 0 0 0 0 1 0 1 0

4816 50 83 3 3.00000 0 0 0 0 1 0 1 0

2470 33 81 2 4.50000 187 0 1 1 1 0 1 0

2136 50 115 1 1.20000 0 0 0 0 1 0 0 0

464 43 83 4 3.60000 0 0 0 0 1 0 0 0

1793 35 113 3 0.80000 0 0 0 1 0 0 0 0

2625 61 108 4 3.40000 0 0 0 1 0 0 0 1

3766 59 108 4 3.80000 304 0 0 1 0 0 0 0

There	are	21	misclassifications	and	on	the	test	set.
incorrect_data	consists	of	all	misclassified	elements.
Let's	try	to	see	if	there	is	any	specific	pattern	in	these	samples

Looking	at	the	above	profile,	we	see	that	incorrectly	classified	people	are	:

Usually	between	32	and	65	age	and	have	experience	in	between	2	to	40	years,	with	15	and	17	uniques	values.
Income	varies	between	64	to	115(thousand	dollars),	while	usual	income	varied	from	8	to	224(thousand	dollars)
Most	of	the	people	misclassified	have	0	mortgages,	no	Securities	Account,	and	no	CD_account,	have	a	family	size	1	or	2,	and	customers
who	do	not	prefer	internet	banking	facilities.
Based	on	the	business	rule,	we	derived	we	were	able	to	see	that	usually	people	with	income	less	than	116,	less	mortgage,	family	size
less	than	3	doesn't	buy	loan	-	There	are	special	cases	always,	so	some	people	with	less	income	and	smaller	family	size	might	also	buy
loan.

incorrect_data	=	data2[data2["Personal_Loan"]	!=	0]

incorrect_data.shape

incorrect_data

profile	=	ProfileReport(incorrect_data,	title="Misclassified	Data	Points",	minimal=True)
profile.to_widgets()
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