
Bank	Churn	prediction
Context:
Businesses	like	banks	which	provide	service	have	to	worry	about	problem	of	'Customer	Churn'	i.e.	customers	leaving	and	joining	another
service	provider.	It	is	important	to	understand	which	aspects	of	the	service	influence	a	customer's	decision	in	this	regard.	Management	can
concentrate	efforts	on	improvement	of	service,	keeping	in	mind	these	priorities.

Objective:

Let	us	consider	you	are	working	as	Data	scientist	with	the	bank	and	you	need	to	build	a	neural	network	based	classifier	that	can	determine
whether	a	customer	will	leave	the	bank	or	not	in	the	next	6	months.

Data	Dictionary:

The	case	study	is	from	an	open-source	dataset	from	Kaggle.The	dataset	contains	10,000	sample	points	with	14	distinct	features	as	follows:

CustomerId:	Unique	ID	which	is	assigned	to	each	customer

Surname:	Last	name	of	the	customer

CreditScore:	It	defines	the	credit	history	of	the	customer.

Geography:	A	customer’s	location

Gender:	It	defines	the	Gender	of	the	customer

Age:	Age	of	the	customer

Tenure:	Number	of	years	for	which	the	customer	has	been	with	the	bank

NumOfProducts:	refers	to	the	number	of	products	that	a	customer	has	purchased	through	the	bank.

Balance:	Account	balance

HasCrCard:	It	is	a	categorical	variable	which	decides	whether	the	customer	has	credit	card	or	not.

EstimatedSalary:	Estimated	salary

isActiveMember:	Is	is	a	categorical	variable	which	decides	whether	the	customer	is	active	member	of	the	bank	or	not	(	Active	member	in	the
sense,	using	bank	products	regularly,	making	transactions	etc	)

Excited	:	whether	or	not	the	customer	left	the	bank	within	six	month.	It	can	take	two	values

0=No	(	Customer	did	not	leave	the	bank	)	1=Yes	(	Customer	left	the	bank	)

Requirement	already	satisfied:	tensorflow	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages	(2.7.0
)
Requirement	already	satisfied:	libclang>=9.0.1	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages	(
from	tensorflow)	(12.0.0)
Requirement	already	satisfied:	typing-extensions>=3.6.6	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-p
ackages	(from	tensorflow)	(3.7.4.3)
Requirement	already	satisfied:	six>=1.12.0	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages	(from	
tensorflow)	(1.15.0)
Requirement	already	satisfied:	tensorboard~=2.6	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages	
(from	tensorflow)	(2.7.0)
Requirement	already	satisfied:	wheel<1.0,>=0.32.0	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-package
s	(from	tensorflow)	(0.36.2)
Requirement	already	satisfied:	astunparse>=1.6.0	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages	
(from	tensorflow)	(1.6.3)
Requirement	already	satisfied:	tensorflow-io-gcs-filesystem>=0.21.0	in	/Users/arturocasasa/opt/anaconda3/lib/pyth
on3.8/site-packages	(from	tensorflow)	(0.23.1)
Requirement	already	satisfied:	absl-py>=0.4.0	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages	(f
rom	tensorflow)	(0.15.0)
Requirement	already	satisfied:	grpcio<2.0,>=1.24.3	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packag
es	(from	tensorflow)	(1.41.0)
Requirement	already	satisfied:	h5py>=2.9.0	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages	(from	
tensorflow)	(3.1.0)
Requirement	already	satisfied:	opt-einsum>=2.3.2	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages	
(from	tensorflow)	(3.3.0)
Requirement	already	satisfied:	gast<0.5.0,>=0.2.1	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-package
s	(from	tensorflow)	(0.4.0)

!pip	install	tensorflow



Requirement	already	satisfied:	tensorflow-estimator<2.8,~=2.7.0rc0	in	/Users/arturocasasa/opt/anaconda3/lib/pytho
n3.8/site-packages	(from	tensorflow)	(2.7.0)
Requirement	already	satisfied:	protobuf>=3.9.2	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages	(
from	tensorflow)	(3.19.0)
Requirement	already	satisfied:	numpy>=1.14.5	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages	(fr
om	tensorflow)	(1.19.5)
Requirement	already	satisfied:	keras<2.8,>=2.7.0rc0	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packa
ges	(from	tensorflow)	(2.7.0)
Requirement	already	satisfied:	flatbuffers<3.0,>=1.12	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-pac
kages	(from	tensorflow)	(1.12)
Requirement	already	satisfied:	google-pasta>=0.1.1	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packag
es	(from	tensorflow)	(0.2.0)
Requirement	already	satisfied:	wrapt>=1.11.0	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages	(fr
om	tensorflow)	(1.12.1)
Requirement	already	satisfied:	termcolor>=1.1.0	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages	
(from	tensorflow)	(1.1.0)
Requirement	already	satisfied:	keras-preprocessing>=1.1.1	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site
-packages	(from	tensorflow)	(1.1.2)
Requirement	already	satisfied:	werkzeug>=0.11.15	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages	
(from	tensorboard~=2.6->tensorflow)	(1.0.1)
Requirement	already	satisfied:	setuptools>=41.0.0	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-package
s	(from	tensorboard~=2.6->tensorflow)	(52.0.0.post20210125)
Requirement	already	satisfied:	tensorboard-plugin-wit>=1.6.0	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/s
ite-packages	(from	tensorboard~=2.6->tensorflow)	(1.8.0)
Requirement	already	satisfied:	tensorboard-data-server<0.7.0,>=0.6.0	in	/Users/arturocasasa/opt/anaconda3/lib/pyt
hon3.8/site-packages	(from	tensorboard~=2.6->tensorflow)	(0.6.1)
Requirement	already	satisfied:	markdown>=2.6.8	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages	(
from	tensorboard~=2.6->tensorflow)	(3.3.4)
Requirement	already	satisfied:	google-auth-oauthlib<0.5,>=0.4.1	in	/Users/arturocasasa/opt/anaconda3/lib/python3.
8/site-packages	(from	tensorboard~=2.6->tensorflow)	(0.4.6)
Requirement	already	satisfied:	requests<3,>=2.21.0	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packag
es	(from	tensorboard~=2.6->tensorflow)	(2.25.1)
Requirement	already	satisfied:	google-auth<3,>=1.6.3	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-pack
ages	(from	tensorboard~=2.6->tensorflow)	(2.3.0)
Requirement	already	satisfied:	rsa<5,>=3.1.4	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages	(fr
om	google-auth<3,>=1.6.3->tensorboard~=2.6->tensorflow)	(4.7.2)
Requirement	already	satisfied:	pyasn1-modules>=0.2.1	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-pack
ages	(from	google-auth<3,>=1.6.3->tensorboard~=2.6->tensorflow)	(0.2.8)
Requirement	already	satisfied:	cachetools<5.0,>=2.0.0	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-pac
kages	(from	google-auth<3,>=1.6.3->tensorboard~=2.6->tensorflow)	(4.2.4)
Requirement	already	satisfied:	requests-oauthlib>=0.7.0	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-p
ackages	(from	google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.6->tensorflow)	(1.3.0)
Requirement	already	satisfied:	pyasn1<0.5.0,>=0.4.6	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packa
ges	(from	pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard~=2.6->tensorflow)	(0.4.8)
Requirement	already	satisfied:	idna<3,>=2.5	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages	(fro
m	requests<3,>=2.21.0->tensorboard~=2.6->tensorflow)	(2.10)
Requirement	already	satisfied:	urllib3<1.27,>=1.21.1	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-pack
ages	(from	requests<3,>=2.21.0->tensorboard~=2.6->tensorflow)	(1.26.4)
Requirement	already	satisfied:	certifi>=2017.4.17	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-package
s	(from	requests<3,>=2.21.0->tensorboard~=2.6->tensorflow)	(2020.12.5)
Requirement	already	satisfied:	chardet<5,>=3.0.2	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages	
(from	requests<3,>=2.21.0->tensorboard~=2.6->tensorflow)	(4.0.0)
Requirement	already	satisfied:	oauthlib>=3.0.0	in	/Users/arturocasasa/opt/anaconda3/lib/python3.8/site-packages	(
from	requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.6->tensorflow)	(3.1.1)

#importing	tensorflow	and	checking	its	version
import	tensorflow	as	tf
print(tf.__version__)
from	numpy.random	import	seed
seed(1)

import	pandas	as	pd
from	tensorflow.keras.models	import	Sequential
from	tensorflow.keras.layers	import	Dense
from	sklearn	import	model_selection
from	sklearn.model_selection	import	train_test_split
from	sklearn.preprocessing	import	LabelEncoder,	OneHotEncoder
from	sklearn.compose	import	ColumnTransformer
from	sklearn.metrics	import	confusion_matrix
import	matplotlib.pyplot	as	plt
import	seaborn	as	sns

from	sklearn.pipeline	import	Pipeline
from	sklearn.model_selection	import	GridSearchCV

import	tensorflow	as	tf
from	keras.layers	import	Dense,	Input,	Dropout
from	keras.wrappers.scikit_learn	import	KerasClassifier
import	numpy	as	np

from	google.colab	import	files



Read	the	dataset

Drop	the	columns	which	are	unique	for	all	users	like	IDs

As	you	can	see,	there	are	no	null	values	in	any	of	the	column	of	this	dataset

Exploratory	Data	Analysis
Here	our	main	interest	is	to	get	an	understanding	as	to	how	the	given	attributes	relate	to	the	'Exit'	status.

About	20%	of	the	customers	have	churned.	So	the	baseline	model	could	be	to	predict	that	20%	of	the	customers	will	churn.	Given	20%	is
a	small	number,	we	need	to	ensure	that	the	chosen	model	does	predict	with	great	accuracy	this	20%	as	it	is	of	interest	to	the	bank	to
identify	and	keep	this	bunch	as	opposed	to	accurately	predicting	the	customers	that	are	retained

We	note	the	following:

Majority	of	the	data	is	from	persons	from	France.	However,	the	proportion	of	churned	customers	is	with	inversely	related	to	the
population	of	customers	alluding	to	the	bank	possibly	having	a	problem	(maybe	not	enough	customer	service	resources	allocated)	in	the
areas	where	it	has	fewer	clients.

The	proportion	of	female	customers	churning	is	also	greater	than	that	of	male	customers	Interestingly,	majority	of	the	customers	that
churned	are	those	with	credit	cards.	Given	that	majority	of	the	customers	have	credit	cards	could	prove	this	to	be	just	a	coincidence.

Unsurprisingly	the	inactive	members	have	a	greater	churn.	Worryingly	is	that	the	overall	proportion	of	inactive	mebers	is	quite	high
suggesting	that	the	bank	may	need	a	program	implemented	to	turn	this	group	to	active	customers	as	this	will	definately	have	a	positive
impact	on	the	customer	churn

from	google.colab	import	files
files.upload()

ds	=	pd.read_csv("bank.csv")

ds.head(10)

ds['Geography'].value_counts()

#RowNumber	,	CustomerId	and	Surname	are	unique	hence	dropping	it
ds	=	ds.drop(['RowNumber',	'CustomerId',	'Surname'],	axis=1)

ds.info()

labels	=	'Exited',	'Retained'
sizes	=	[ds.Exited[ds['Exited']==1].count(),	ds.Exited[ds['Exited']==0].count()]
explode	=	(0,	0.1)
fig1,	ax1	=	plt.subplots(figsize=(10,	8))
ax1.pie(sizes,	explode=explode,	labels=labels,	autopct='%1.1f%%',
								shadow=True,	startangle=90)
ax1.axis('equal')
plt.title("Proportion	of	customer	churned	and	retained",	size	=	20)
plt.show()

#	We	first	review	the	'Status'	relation	with	categorical	variables
fig,	axarr	=	plt.subplots(2,	2,	figsize=(20,	12))
sns.countplot(x='Geography',	hue	=	'Exited',data	=	ds,	ax=axarr[0][0])
sns.countplot(x='Gender',	hue	=	'Exited',data	=	ds,	ax=axarr[0][1])
sns.countplot(x='HasCrCard',	hue	=	'Exited',data	=	ds,	ax=axarr[1][0])
sns.countplot(x='IsActiveMember',	hue	=	'Exited',data	=	ds,	ax=axarr[1][1])

#	Relations	based	on	the	continuous	data	attributes
fig,	axarr	=	plt.subplots(3,	2,	figsize=(20,	12))
sns.boxplot(y='CreditScore',x	=	'Exited',	hue	=	'Exited',data	=	ds,	ax=axarr[0][0])
sns.boxplot(y='Age',x	=	'Exited',	hue	=	'Exited',data	=	ds	,	ax=axarr[0][1])
sns.boxplot(y='Tenure',x	=	'Exited',	hue	=	'Exited',data	=	ds,	ax=axarr[1][0])
sns.boxplot(y='Balance',x	=	'Exited',	hue	=	'Exited',data	=	ds,	ax=axarr[1][1])
sns.boxplot(y='NumOfProducts',x	=	'Exited',	hue	=	'Exited',data	=	ds,	ax=axarr[2][0])
sns.boxplot(y='EstimatedSalary',x	=	'Exited',	hue	=	'Exited',data	=	ds,	ax=axarr[2][1])



We	note	the	following:

There	is	no	significant	difference	in	the	credit	score	distribution	between	retained	and	churned	customers.	The	older	customers	are
churning	at	more	than	the	younger	ones	alluding	to	a	difference	in	service	preference	in	the	age	categories.	The	bank	may	need	to
review	their	target	market	or	review	the	strategy	for	retention	between	the	different	age	groups

With	regard	to	the	tenure,	the	clients	on	either	extreme	end	(spent	little	time	with	the	bank	or	a	lot	of	time	with	the	bank)	are	more	likely	to
churn	compared	to	those	that	are	of	average	tenure.	Worryingly,	the	bank	is	losing	customers	with	significant	bank	balances	which	is
likely	to	hit	their	available	capital	for	lending.

Neither	the	product	nor	the	salary	has	a	significant	effect	on	the	likelihood	to	churn

Insights	:

No	correlation	observed	between	the	columns

Exited	Customers	seem	to	be	distributed	across	all	Credit	Scores

Lot	of	Customers	customers	aged	between	40-60	seem	to	have	exited	the	bank

Lot	of	customers	with	3-4	products	seem	to	have	exited	the	bank

Customers	with	or	without	credit	cards	seem	to	have	exited	the	bank

Lot	of	customers	who	are	non	active	members	seem	to	have	exited	the	bank

Customers	across	all	Estimated	Salaries	seem	to	have	exited	the	bank	uniformly

Insights	:	None	of	the	columns	are	strongly	corelated	with	each	other.	There	is	no	multicollinearity.

Distinguish	the	feature	and	target	set

Categorical	Encoding

sns.pairplot(ds,	diag_kind	=	'kde',	hue	=	'Exited')

plt.figure(figsize	=	(15,	10))
sns.heatmap(ds.corr(),	annot	=	True,	fmt	=	'0.2f')

X	=	ds.iloc[:,0:10].values	#	Credit	Score	through	Estimated	Salary
y	=	ds.iloc[:,10].values	#	Exited

#	Encoding	categorical	(string	based)	data.	Country:	there	are	3	options:	France,	Spain	and	Germany
#	This	will	convert	those	strings	into	scalar	values	for	analysis
print(X[:8,1],	'...	will	now	become:	')

label_X_country_encoder	=	LabelEncoder()
X[:,1]	=	label_X_country_encoder.fit_transform(X[:,1])
print(X[:8,1])

#	We	will	do	the	same	thing	for	gender.	this	will	be	binary	in	this	dataset
print(X[:6,2],	'...	will	now	become:	')

label_X_gender_encoder	=	LabelEncoder()
X[:,2]	=	label_X_gender_encoder.fit_transform(X[:,2])
print(X[:6,2])

#	The	Problem	here	is	that	we	are	treating	the	countries	as	one	variable	with	ordinal	values	(0	<	1	<	2).	
#	Therefore,	one	way	to	get	rid	of	that	problem	is	to	split	the	countries	into	respective	dimensions.
#	Gender	does	not	need	this	as	it	is	binary

#	Converting	the	string	features	into	their	own	dimensions.	Gender	doesn't	matter	here	because	its	binary
#countryhotencoder	=	OneHotEncoder(categories	=	[1])	#	1	is	the	country	column
countryhotencoder	=	ColumnTransformer([("countries",	OneHotEncoder(),	[1])],	remainder="passthrough")
X	=	countryhotencoder.fit_transform(X)
#X	=	countryhotencoder.fit_transform(X).toarray()

#Printing	the	shape	of	the	data	
X.shape



Divide	the	data	set	into	Train	and	test	sets

Normalize	the	train	and	test	data

Initialize	&	build	the	model

Validation	and	training	Loss	is	decreasing	smoothly.	There	is	no	noise	in	the	training.	Sometimes,	Loss	function	fluctuates	a	lot	during	training
which	makes	the	convergence	slow.	These	fluctions	are	due	to	the	noisy	updates	in	the	parameters.	Validation	and	test	Accuracy	also	seems
to	be	fine.	Let's	check	other	metrices

Let's	Plot	confusion	matrix

#Printing	the	data
X	

#	A	0	on	two	countries	means	that	the	country	has	to	be	the	one	variable	which	wasn't	included	
#	This	will	save	us	from	the	problem	of	using	too	many	dimensions
X	=	X[:,1:]	#	Got	rid	of	Spain	as	a	dimension.

#	Splitting	the	dataset	into	the	Training	and	Testing	set.

X_train,	X_test,	y_train,	y_test	=	train_test_split(X,y,	test_size	=	0.2,	random_state	=	42)

#	Feature	Scaling
from	sklearn.preprocessing	import	StandardScaler
sc=StandardScaler()
X_train	=	sc.fit_transform(X_train)
X_test	=	sc.transform(X_test)

#	Initializing	the	ANN
classifier	=	Sequential()

#	The	amount	of	nodes	(dimensions)	in	hidden	layer	should	be	the	average	of	input	and	output	layers,	in	this	case	64.
#	This	adds	the	input	layer	(by	specifying	input	dimension)	AND	the	first	hidden	layer	(units)
classifier.add(Dense(activation	=	'relu',	input_dim	=	11,	units=64))

#Add	1st	hidden	layer
classifier.add(Dense(32,	activation='relu'))

#	Adding	the	output	layer
#	Notice	that	we	do	not	need	to	specify	input	dim.	
#	we	have	an	output	of	1	node,	which	is	the	the	desired	dimensions	of	our	output	(stay	with	the	bank	or	not)
#	We	use	the	sigmoid	because	we	want	probability	outcomes
classifier.add(Dense(1,	activation	=	'sigmoid'))	

#	Create	optimizer	with	default	learning	rate
#	Compile	the	model
classifier.compile(optimizer='SGD',	loss='mse',	metrics=['accuracy'])

classifier.summary()

history=classifier.fit(X_train,	y_train,											
										validation_split=0.2,
										epochs=100,
										batch_size=32)

#	Capturing	learning	history	per	epoch
hist		=	pd.DataFrame(history.history)
hist['epoch']	=	history.epoch

#	Plotting	accuracy	at	different	epochs
plt.plot(hist['loss'])
plt.plot(hist['val_loss'])
plt.legend(("train"	,	"valid")	,	loc	=0)

#Printing	results
results	=	classifier.evaluate(X_test,	y_test)



def	make_confusion_matrix(cf,
																										group_names=None,
																										categories='auto',
																										count=True,
																										percent=True,
																										cbar=True,
																										xyticks=True,
																										xyplotlabels=True,
																										sum_stats=True,
																										figsize=None,
																										cmap='Blues',
																										title=None):
				'''
				This	function	will	make	a	pretty	plot	of	an	sklearn	Confusion	Matrix	cm	using	a	Seaborn	heatmap	visualization.
				Arguments
				'''

				#	CODE	TO	GENERATE	TEXT	INSIDE	EACH	SQUARE
				blanks	=	[''	for	i	in	range(cf.size)]

				if	group_names	and	len(group_names)==cf.size:
								group_labels	=	["{}\n".format(value)	for	value	in	group_names]
				else:
								group_labels	=	blanks

				if	count:
								group_counts	=	["{0:0.0f}\n".format(value)	for	value	in	cf.flatten()]
				else:
								group_counts	=	blanks

				if	percent:
								group_percentages	=	["{0:.2%}".format(value)	for	value	in	cf.flatten()/np.sum(cf)]
				else:
								group_percentages	=	blanks

				box_labels	=	[f"{v1}{v2}{v3}".strip()	for	v1,	v2,	v3	in	zip(group_labels,group_counts,group_percentages)]
				box_labels	=	np.asarray(box_labels).reshape(cf.shape[0],cf.shape[1])

				#	CODE	TO	GENERATE	SUMMARY	STATISTICS	&	TEXT	FOR	SUMMARY	STATS
				if	sum_stats:
								#Accuracy	is	sum	of	diagonal	divided	by	total	observations
								accuracy		=	np.trace(cf)	/	float(np.sum(cf))

								#if	it	is	a	binary	confusion	matrix,	show	some	more	stats
								if	len(cf)==2:
												#Metrics	for	Binary	Confusion	Matrices
												precision	=	cf[1,1]	/	sum(cf[:,1])
												recall				=	cf[1,1]	/	sum(cf[1,:])
												f1_score		=	2*precision*recall	/	(precision	+	recall)
												stats_text	=	"\n\nAccuracy={:0.3f}\nPrecision={:0.3f}\nRecall={:0.3f}\nF1	Score={:0.3f}".format(
																accuracy,precision,recall,f1_score)
								else:
												stats_text	=	"\n\nAccuracy={:0.3f}".format(accuracy)
				else:
								stats_text	=	""

				#	SET	FIGURE	PARAMETERS	ACCORDING	TO	OTHER	ARGUMENTS
				if	figsize==None:
								#Get	default	figure	size	if	not	set
								figsize	=	plt.rcParams.get('figure.figsize')

				if	xyticks==False:
								#Do	not	show	categories	if	xyticks	is	False
								categories=False

				#	MAKE	THE	HEATMAP	VISUALIZATION
				plt.figure(figsize=figsize)
				sns.heatmap(cf,annot=box_labels,fmt="",cmap=cmap,cbar=cbar,xticklabels=categories,yticklabels=categories)

				if	xyplotlabels:
								plt.ylabel('True	label')
								plt.xlabel('Predicted	label'	+	stats_text)
				else:
								plt.xlabel(stats_text)
				
				if	title:
								plt.title(title)

#Calculating	the	confusion	matrix	
y_pred1=classifier.predict(X_test)



Model	evaluation	criterion

Model	can	make	wrong	predictions	as:

Predicting	a	customer	is	exiting	and	the	customer	is	not	exiting
Predicting	a	customer	is	not	exiting	and	customer	is	exiting

Which	case	is	more	important?

Predicting	that	customer	is	not	exiting	but	he/she	is	exiting.	It	might	cause	loss	to	the	banks	because	due	to	wrong	identification	bank	will
not	be	able	to	take	any	initiative	for	those	sensitive	customers.

How	to	reduce	this	loss	i.e	need	to	reduce	False	Negative?

Bank	would	want	 Recall 	to	be	maximized,	greater	the	Recall	higher	the	chances	of	minimizing	false	Negative.	Hence,	the	focus
should	be	on	increasing	Recall	or	minimizing	the	false	Negative	or	in	other	words	identifying	the	True	Positive(i.e.	Class	1)	so	that	the
bank	can	retain	their	customers.

As	you	can	see,	the	above	model	has	good	accuracy	and	precision	but	have	poor	recall.	There	can	be	two	reasons	as	follows:

1)	Imbalanced	dataset:	As	you	have	seen	in	the	EDA,	This	dataset	is	imbalanced	and	it	contains	more	examples	belong	to	non_exited	class
(0).

2)	Inappropriate	loss	function:	We're	using	MSE	loss	function	which	is	not	appropriate	for	the	classification	problem	because	it	tries	to
minimize	the	mean	(	Central	value	)	and	here	the	dataset	is	imbalanced	and	mean	is	more	biased	towards	0th	class.

3)	Decision	Threshold	As	you	see	this	dataset	is	imbalance.	Therefore,	we	can	use	ROC-AUC	to	find	the	optimal	threshold	and	use	the
same	for	prediction.

Lets	try	to	change	the	loss	function,	tune	the	decision	threshold,	apply	SMOTE	to	balance	the	dataset	and	configure	some	other
hyperparameters	accordingly

Changing	the	loss	function	to	binary_crossentropy	which	is	used	for	binary	classification

As	you	can	see	from	the	above	image,	this	model	is	severely	overfitting.	Deep	learning	models	are	very	senstive	to	overfititng	due	to	large

#Let's	predict	using	default	threshold
y_pred1	=	(y_pred1	>	0.5)
cm2=confusion_matrix(y_test,	y_pred1)
labels	=	['True	Negative','False	Positive','False	Negative','True	Positive']
categories	=	[	'Not_Exited','Exited']
make_confusion_matrix(cm2,	
																						group_names=labels,
																						categories=categories,	
																						cmap='Blues')

def	create_model():
						#Initializing	the	neural	network
						model	=	Sequential()
						#Adding	the	hidden	and	output	layers
						model.add(Dense(64,activation='relu',input_dim	=	X_train.shape[1]))
						model.add(Dense(32,activation='relu'))
						model.add(Dense(1,	activation	=	'sigmoid'))
						#Compiling	the	ANN	with	RMSprop	optimizer	and	binary	cross	entropy	loss	function	
						optimizer	=	tf.keras.optimizers.Adam(0.001)
						model.compile(loss='binary_crossentropy',optimizer=optimizer,metrics=['accuracy'])
						return	model

model=create_model()
model.summary()

#Fitting	the	ANN	with	batch_size	=	32	and	100	epochs	
history	=	model.fit(X_train,y_train,batch_size=32,epochs=100,verbose=1,validation_split	=	0.2)

#Plotting	Train	Loss	vs	Validation	Loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model	loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['train',	'validation'],	loc='upper	left')
plt.show()



amount	of	parameters.	We	need	to	find	the	optimal	point	where	the	training	should	be	stopped.

The	best	solution	for	the	above	problem	is	Early	stopping.

Early	stopping:

During	training,	the	model	is	evaluated	on	a	holdout	validation	dataset	after	each	epoch.	If	the	performance	of	the	model	on	the	validation
dataset	starts	to	degrade	or	no	improvement	(e.g.	loss	begins	to	increase	or	accuracy	begins	to	decrease),	then	the	training	process	is
stopped	after	the	certian	interations.The	model	at	the	time	that	training	is	stopped	is	then	used	and	is	known	to	have	good	generalization
performance.

This	procedure	is	called	“early	stopping”	and	is	perhaps	one	of	the	oldest	and	most	widely	used	forms	of	neural	network	regularization.

Lets	plot	the	loss	function	again

As	you	can	see	from	the	above	graph,	Training	is	stopped	at	the	appropriate	epoch	because	after	that,	loss	function	started	to	increase.
Therefore,	Early	stopping	prevents	the	overfitting

Let's	tune	the	threshold	using	ROC-AUC

There	are	many	ways	we	could	locate	the	threshold	with	the	optimal	balance	between	false	positive	and	true	positive	rates.

Firstly,	the	true	positive	rate	is	called	the	Sensitivity.	The	inverse	of	the	false-positive	rate	is	called	the	Specificity.

Sensitivity	=	TruePositive	/	(TruePositive	+	FalseNegative)

Specificity	=	TrueNegative	/	(FalsePositive	+	TrueNegative)

Where:

Sensitivity	=	True	Positive	Rate

Specificity	=	1	–	False	Positive	Rate

The	Geometric	Mean	or	G-Mean	is	a	metric	for	imbalanced	classification	that,	if	optimized,	will	seek	a	balance	between	the	sensitivity	and	the
specificity.

G-Mean	=	sqrt(Sensitivity	*	Specificity)

One	approach	would	be	to	test	the	model	with	each	threshold	returned	from	the	call	roc_auc_score()	and	select	the	threshold	with	the	largest
G-Mean	value.

#Importing	classback	API
from	keras	import	callbacks	
es_cb	=	callbacks.EarlyStopping(monitor='val_loss',	min_delta=0.001,	patience=5)
model_e=create_model()
#Fitting	the	ANN	with	batch_size	=	32	and	100	epochs	
history_e	=	model_e.fit(X_train,y_train,batch_size=32,epochs=100,verbose=1,validation_split	=	0.2,callbacks=[es_cb

#Plotting	Train	Loss	vs	Validation	Loss
plt.plot(history_e.history['loss'])
plt.plot(history_e.history['val_loss'])
plt.title('model	loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['train',	'validation'],	loc='upper	left')
plt.show()

from	sklearn.metrics	import	roc_curve

from	matplotlib	import	pyplot

#	predict	probabilities
yhat	=	model.predict_proba(X_test)
#	keep	probabilities	for	the	positive	outcome	only
yhat	=	yhat[:,	0]
#	calculate	roc	curves
fpr,	tpr,	thresholds	=	roc_curve(y_test,	yhat)
#	calculate	the	g-mean	for	each	threshold
gmeans	=	np.sqrt(tpr	*	(1-fpr))
#	locate	the	index	of	the	largest	g-mean
ix	=	np.argmax(gmeans)
print('Best	Threshold=%f,	G-Mean=%.3f'	%	(thresholds[ix],	gmeans[ix]))
#	plot	the	roc	curve	for	the	model
pyplot.plot([0,1],	[0,1],	linestyle='--',	label='No	Skill')



Accuracy,	Precision,	Recall,	and	F1-Scores

Printing	Confusion	matrix

As	you	can	see,	the	recall	of	the	model	is	changed	but	accuracy	got	decreased.	Let's	try	hyperparameter	tuning	to	get	the	better	model

We	can	name	this	model	as	model_e	(	model	with	earlystopping	)

Hyperparameter	Optimization

Some	important	parameters	to	look	out	for	while	optimizing	neural	networks	are:

-Type	of	architecture

-Number	of	Layers

-Number	of	Neurons	in	a	layer

-Regularization	parameters

-Learning	Rate

-Type	of	optimization	/	backpropagation	technique	to	use

-Dropout	rate

-Weight	sharing

Number	of	Layers:

We	will	keep	it	similar	to	the	above	model	so	that	we	can	compare	the	accuracy.	1	hidden	layer.

Activation:

input	layer:	relu	becasue	we	are	in	an	input	layer.	uses	the	ReLu	activation	function	for	ϕ	output	layer:	sigmoid	becasue	we	are	in	an	output
layer.	uses	the	Sigmoid	activation	function	for	ϕ	.	This	is	used	instead	of	the	ReLu	function	becasue	it	generates	probabilities	for	the	outcome.
We	want	the	probability	that	each	customer	leaves	the	bank.

Type	of	optimization	/	backpropagation	technique	to	use:

We	will	use	Adam.	Adam	is	a	very	efficeint	variation	of	Stochastic	Gradient	Descent.	For	Adam	and	its	variant,	learning	rate	or	the	decay	rate
does	not	really	matter	too	much.

Learning	Rate:

default	learning	rate	0.001.

pyplot.plot(fpr,	tpr,	marker='.',	label='Logistic')
pyplot.scatter(fpr[ix],	tpr[ix],	marker='o',	color='black',	label='Best')
#	axis	labels
pyplot.xlabel('False	Positive	Rate')
pyplot.ylabel('True	Positive	Rate')
pyplot.legend()
#	show	the	plot
pyplot.show()

#Predicting	the	results	using	best	as	a	threshold
y_pred_e=model_e.predict(X_test)
y_pred_e	=	(y_pred_e	>	thresholds[ix])
y_pred_e

#Accuracy	as	per	the	classification	report	
from	sklearn	import	metrics
cr=metrics.classification_report(y_test,y_pred_e)
print(cr)

#Calculating	the	confusion	matrix	

cm1=confusion_matrix(y_test,	y_pred_e)
labels	=	['True	Negative','False	Positive','False	Negative','True	Positive']
categories	=	[	'Not_Exited','Exited']
make_confusion_matrix(cm1,	
																						group_names=labels,
																						categories=categories,	
																						cmap='Blues')



Number	of	Neurons	in	a	layer:

We	will	keep	it	6	as	per	our	initial	calculation	above.

Weight	sharing	/	kernel_initializer:

uniform	the	distribution	with	which	we	randomly	initialize	weights	for	the	nodes	in	this	layer.

Loss:

loss:	binary_crossentropy	This	is	the	loss	function	used	within	adam.	This	should	be	the	logarthmic	loss.	If	our	dependent	(output	variable)	is
Binary,	it	is	binary_crossentropy.	If	Categorical,	then	it	is	called	categorical_crossentropy

Rebuilding	the	model	using	these	optimised	parameters

Let's	try	to	use	drop	out	to	reduce	overfitting.	Here,	we	will	not	be	using	earlystopping	because	earlystopping	also	have	some	drawbacks.	We
should	try	using	it	with	the	complex	models

Using	Grid	search
We	are	using	grid	search	to	optimize	thwo	hyperparameters	called	batch	size,	epochs	due	to	the	limited	time.	But	you	can	optimize	the	other
hyperparameters	as	mentioned	above

Best	model	is	with	the	following	configuration:	(	It	may	vary	each	time	code	runs	)

Result	of	Grid	Search

{'batch_size':	40,	'learning_rate":0.01}

Heuristic	for	Hyperparameters

def	create_model_v2(dropout_rate=0.1,lr=0.001,layer_1=64,layer_2=32):		
				np.random.seed(1337)
				model	=	Sequential()
				#	This	adds	the	input	layer	(by	specifying	input	dimension)	AND	the	first	hidden	layer	(units)
				model.add(Dense(layer_1,activation='relu',input_dim	=	X_train.shape[1]))
				#Adding	dropout	layer
				model.add(Dropout(0.5))
				#	#	Adding	the	hidden	layer
				#	Notice	that	we	do	not	need	to	specify	input	dim.	
				model.add(Dense(layer_2,activation='relu'))
				#	#	Adding	the	output	layer
				#	Notice	that	we	do	not	need	to	specify	input	dim.	
				#	we	have	an	output	of	1	node,	which	is	the	the	desired	dimensions	of	our	output	(stay	with	the	bank	or	not)
				#	We	use	the	sigmoid	because	we	want	probability	outcomes
				model.add(Dense(1,	activation='sigmoid'))

				#compile	model
				optimizer	=	tf.keras.optimizers.Adam(learning_rate=lr)
				model.compile(optimizer	=	optimizer,loss	=	'binary_crossentropy',	metrics	=	['accuracy'])
				return	model

keras_estimator	=	KerasClassifier(build_fn=create_model_v2,	verbose=1)

#	define	the	grid	search	parameters
param_grid	=	{
				'batch_size':[40,	64,	128],
				"lr":[0.01,0.001,0.1],
			
				
			
				
}

kfold_splits	=	3
grid	=	GridSearchCV(estimator=keras_estimator,		
																				verbose=1,
																				cv=kfold_splits,		
																				param_grid=param_grid,n_jobs=-1)

grid_result	=	grid.fit(X_train,	y_train,validation_split=0.2,verbose=1)	

#	Summarize	results
print("Best:	%f	using	%s"	%	(grid_result.best_score_,	grid_result.best_params_))
means	=	grid_result.cv_results_['mean_test_score']
stds	=	grid_result.cv_results_['std_test_score']
params	=	grid_result.cv_results_['params']



optimizer="adam",	layer1_units=64,	layer2_units	=	32

Let's	create	the	final	model	with	above	mentioned	configuration

Plotting	the	validation	and	training	loss

As	you	can	seen	,	the	above	model's	validation	curve	does	not	have	high	slope	which	means	it	has	not	decreased	much.	Let's	check	other
metrices	to	understand	how	this	model	works

Tuning	the	threshold

Predict	the	results	using	the	best	threshold

Print	the	confusion	matrix

estimator_v2=create_model_v2(lr=grid_result.best_params_['lr'])

estimator_v2.summary()

history_h=estimator_v2.fit(X_train,	y_train,	epochs=100,	batch_size	=	grid_result.best_params_['batch_size'],	verbose

N	=100
plt.figure(figsize=(8,6))
plt.plot(np.arange(0,	N),	history_h.history["loss"],	label="train_loss")
plt.plot(np.arange(0,	N),	history_h.history["val_loss"],	label="val_loss")

plt.title("Training	Loss	and	Validation	loss	on	the	dataset")
plt.xlabel("Epoch	#")
plt.ylabel("train_Loss/val_loss")
plt.legend(loc="middle")
plt.show()

#	predict	probabilities
yhat	=	estimator_v2.predict_proba(X_test)
#	keep	probabilities	for	the	positive	outcome	only
yhat	=	yhat[:,	0]
#	calculate	roc	curves
fpr,	tpr,	thresholds	=	roc_curve(y_test,	yhat)
#	calculate	the	g-mean	for	each	threshold
gmeans	=	np.sqrt(tpr	*	(1-fpr))
#	locate	the	index	of	the	largest	g-mean
ix	=	np.argmax(gmeans)
print('Best	Threshold=%f,	G-Mean=%.3f'	%	(thresholds[ix],	gmeans[ix]))
#	plot	the	roc	curve	for	the	model
pyplot.plot([0,1],	[0,1],	linestyle='--',	label='No	Skill')
pyplot.plot(fpr,	tpr,	marker='.',	label='Logistic')
pyplot.scatter(fpr[ix],	tpr[ix],	marker='o',	color='black',	label='Best')
#	axis	labels
pyplot.xlabel('False	Positive	Rate')
pyplot.ylabel('True	Positive	Rate')
pyplot.legend()
#	show	the	plot
pyplot.show()

y_pred_h	=	estimator_v2.predict(X_test)
print(y_pred_h)

#	To	use	the	confusion	Matrix,	we	need	to	convert	the	probabilities	that	a	customer	will	leave	the	bank	into	the	form	true	or	false.	
#	So	we	will	use	the	best	cutoff	value		to	indicate	whether	they	are	likely	to	exit	or	not.
y_pred_h	=	(y_pred_h	>	thresholds[ix])
print(y_pred_h)

#lets	print	classification	report
from	sklearn	import	metrics
cr=metrics.classification_report(y_test,y_pred_h)
print(cr)

#Calculating	the	confusion	matrix	
cm_h=confusion_matrix(y_test,	y_pred_h)
labels	=	['True	Negative','False	Positive','False	Negative','True	Positive']



Hyperparameter	tuning	is	used	here	to	get	a	better	accuracy	but	accuracy	might	differ	each	time.	Other	hyperparameters	can	also	be	tuned
to	get	a	better	accuracy.	Here,	Recall	of	the	model	is	slighty	changed	but	the	accuracy	is	slightly	degraded.	But	still	this	model	can	be	a	good
one.	Let's	name	the	above	model	as	model_h

Let's	try	to	apply	SMOTE	to	balance	this	dataset	and	then	again	apply	hyperparamter	tuning	accordingly.

As	you	can	see	in	the	graph,	Both	the	class	have	equal	number	of	examples.	Threfore,	the	datset	is	balanced	now

Let's	build	a	model	with	the	balanced	dataset

We	will	define	the	complex	model	with	some	dropout	layers	added	between	the	hidden	layers	which	will	help	us	to	prevent	overfitting

Finding	the	optimal	threshold

categories	=	[	'Not_Exited','Exited']
make_confusion_matrix(cm_h,	
																						group_names=labels,
																						categories=categories,	
																						cmap='Blues')

from	imblearn.over_sampling	import	SMOTE
sm		=	SMOTE(random_state=42)
X_train,	y_train	=	sm.fit_sample(X_train,	y_train)	
print("After	UpSampling,	counts	of	label	'1':	{}".format(sum(y_train==1)))	
print("After	UpSampling,	counts	of	label	'0':	{}	\n".format(sum(y_train==0)))
print('After	UpSampling,	the	shape	of	train_X:	{}'.format(X_train.shape))	
print('After	UpSampling,	the	shape	of	train_y:	{}	\n'.format(y_train.shape))

sns.countplot(y_train)

#Initializing,	and	Adding	the	hidden	and	output	layers
from	keras	import	callbacks	
model	=	Sequential()
model.add(Dense(64,activation='relu',input_dim	=	X_train.shape[1]))
#Lets	use	dropout	to	prevent	the	overfitting	
model.add(Dropout(0.1))
model.add(Dense(32,activation='relu'))
model.add(Dropout(0.1))
model.add(Dense(1,	activation	=	'sigmoid'))
#compile	model
optimizer	=	tf.keras.optimizers.Adam(0.001)
model.compile(optimizer	=	optimizer,loss	=	'binary_crossentropy',	metrics	=	['accuracy'])
history	=	model.fit(X_train,y_train,batch_size=40,epochs=100,verbose=1,validation_split	=	0.2)

#	Capturing	learning	history	per	epoch
hist		=	pd.DataFrame(history.history)
hist['epoch']	=	history.epoch

#	Plotting	accuracy	at	different	epochs
plt.plot(hist['loss'])
plt.plot(hist['val_loss'])
plt.legend(("train"	,	"valid")	,	loc	=0)

#	predict	probabilities
yhat	=	model.predict_proba(X_test)
#	keep	probabilities	for	the	positive	outcome	only
yhat	=	yhat[:,	0]
#	calculate	roc	curves
fpr,	tpr,	thresholds	=	roc_curve(y_test,	yhat)
#	calculate	the	g-mean	for	each	threshold
gmeans	=	np.sqrt(tpr	*	(1-fpr))
#	locate	the	index	of	the	largest	g-mean
ix	=	np.argmax(gmeans)
print('Best	Threshold=%f,	G-Mean=%.3f'	%	(thresholds[ix],	gmeans[ix]))
#	plot	the	roc	curve	for	the	model
pyplot.plot([0,1],	[0,1],	linestyle='--',	label='No	Skill')
pyplot.plot(fpr,	tpr,	marker='.',	label='Logistic')
pyplot.scatter(fpr[ix],	tpr[ix],	marker='o',	color='black',	label='Best')
#	axis	labels
pyplot.xlabel('False	Positive	Rate')
pyplot.ylabel('True	Positive	Rate')
pyplot.legend()
#	show	the	plot
pyplot.show()

y_pred_s	=	model.predict(X_test)



As	you	can	see,	accuracy	and	recall	of	the	model	have	suddenly	dropped.	Let's	try	Hyperparameter	optimization	to	increase	the	accuracy
without	expense	of	Recall.

Hyperparameter	Optimization

Some	important	parameters	to	look	out	for	while	optimizing	neural	networks	are:

-Type	of	architecture

-Number	of	Layers

-Number	of	Neurons	in	a	layer

-Regularization	parameters

-Learning	Rate

-Type	of	optimization	/	backpropagation	technique	to	use

-Dropout	rate

-Weight	sharing

Number	of	Layers:

We	will	keep	it	similar	to	the	above	model	so	that	we	can	compare	the	accuracy.	1	hidden	layer.

Activation:

input	layer:	relu	becasue	we	are	in	an	input	layer.	uses	the	ReLu	activation	function	for	ϕ	output	layer:	sigmoid	becasue	we	are	in	an	output
layer.	uses	the	Sigmoid	activation	function	for	ϕ	.	This	is	used	instead	of	the	ReLu	function	becasue	it	generates	probabilities	for	the	outcome.
We	want	the	probability	that	each	customer	leaves	the	bank.

Type	of	optimization	/	backpropagation	technique	to	use:

We	will	use	Adam.	Adam	is	a	very	efficeint	variation	of	Stochastic	Gradient	Descent.	For	Adam	and	its	variant,	learning	rate	or	the	decay	rate
does	not	really	matter	too	much.

Learning	Rate:

default	learning	rate	0.001.

Number	of	Neurons	in	a	layer:

We	will	keep	it	6	as	per	our	initial	calculation	above.

Weight	sharing	/	kernel_initializer:

uniform	the	distribution	with	which	we	randomly	initialize	weights	for	the	nodes	in	this	layer.

Loss:

loss:	binary_crossentropy	This	is	the	loss	function	used	within	adam.	This	should	be	the	logarthmic	loss.	If	our	dependent	(output	variable)	is
Binary,	it	is	binary_crossentropy.	If	Categorical,	then	it	is	called	categorical_crossentropy

Rebuilding	the	model	using	these	optimised	parameters

y_pred_s	=	model.predict(X_test)
#Predicting	the	results	using	tuned	threshold
y_pred_s	=	(y_pred_s	>thresholds[ix])
y_pred_s

from	sklearn	import	metrics
cr=metrics.classification_report(y_test,y_pred_s)
print(cr)

#Calculating	the	confusion	matrix	
cm_s=confusion_matrix(y_test,	y_pred_s)
labels	=	['True	Negative','False	Positive','False	Negative','True	Positive']
categories	=	[	'Not_Exited','Exited']
make_confusion_matrix(cm_s,	
																						group_names=labels,
																						categories=categories,	
																						cmap='Blues')

def	create_model_v2(dropout_rate=0.1,lr=0.001,layer_1=64,layer_2=32):		
				np.random.seed(1337)



Using	Grid	search
We	are	using	grid	search	to	optimize	three	hyperparameters	called	drop_out	rate,	batch	size,	epochs	due	to	the	limited	time.	But	you	can
optimize	the	other	hyperparameters	as	mentioned	above

Best	model	is	with	the	following	configuration:	(	It	may	vary	each	time	code	runs	)

Result	of	Grid	Search

{'batch_size':	64,	'dropout':	0,	'learning_rate":0.01}

Heuristic	for	Hyperparameters

optimizer="adam",	layer1_units=64,	layer2_units	=	32

Let's	create	the	final	model	with	above	mentioned	configuration

Plotting	the	validation	and	training	loss

				model	=	Sequential()
				#	This	adds	the	input	layer	(by	specifying	input	dimension)	AND	the	first	hidden	layer	(units)
				model.add(Dense(layer_1,activation='relu',input_dim	=	X_train.shape[1]))
				#Lets	use	dropout	to	prevent	the	overfitting	
				model.add(Dropout(dropout_rate))
				#	#	Adding	the	hidden	layer
				#	Notice	that	we	do	not	need	to	specify	input	dim.	
				model.add(Dense(layer_2,activation='relu'))
				#	Adding	dropout	layer	to	prevent	the	overfitting
				model.add(Dropout(dropout_rate))
				#	#	Adding	the	output	layer
				#	Notice	that	we	do	not	need	to	specify	input	dim.	
				#	we	have	an	output	of	1	node,	which	is	the	the	desired	dimensions	of	our	output	(stay	with	the	bank	or	not)
				#	We	use	the	sigmoid	because	we	want	probability	outcomes
				model.add(Dense(1,	activation='sigmoid'))

				#compile	model
				optimizer	=	tf.keras.optimizers.Adam(learning_rate=lr)
				model.compile(optimizer	=	optimizer,loss	=	'binary_crossentropy',	metrics	=	['accuracy'])
				return	model

keras_estimator	=	KerasClassifier(build_fn=create_model_v2,	verbose=1)

#	define	the	grid	search	parameters
param_grid	=	{
				'batch_size':[40,	64,	128],
				"lr":[0.01,0.001,0.1],
				"dropout_rate":[0.1,0.01,0],
				
			
				
}

kfold_splits	=	3
grid	=	GridSearchCV(estimator=keras_estimator,		
																				verbose=1,
																				cv=kfold_splits,		
																				param_grid=param_grid,n_jobs=-1)

grid_result	=	grid.fit(X_train,	y_train,validation_split=0.2,verbose=1)	

#	Summarize	results
print("Best:	%f	using	%s"	%	(grid_result.best_score_,	grid_result.best_params_))
means	=	grid_result.cv_results_['mean_test_score']
stds	=	grid_result.cv_results_['std_test_score']
params	=	grid_result.cv_results_['params']

estimator_v2=create_model_v2(dropout_rate=grid_result.best_params_['dropout_rate'],lr=grid_result.best_params_['lr'

estimator_v2.summary()

es_cb	=	callbacks.EarlyStopping(monitor='val_loss',	min_delta=0.001,	patience=25)
history_h=estimator_v2.fit(X_train,	y_train,	epochs=100,	batch_size	=	grid_result.best_params_['batch_size'],	verbose

N	=100



Finding	the	optimal	threshold

Predict	the	results	using	best	threshold

Print	the	confusion	matrix

Oversampling	using	SMOTE	did	not	help	to	improve	the	Recall.

Note:	-	ANN	used	on	the	sythesized	data	(	SMOTE	)	was	also	working	fine	but	we	can	not	believe	on	this	model	because	here	we	have
generated	the	data	artificially	and	this	might	also	be	the	case	that	a	particular	data	point	generated	in	SMOTE	might	not	make	sense.
Therefore,	we	really	can	not	believe	on	a	model	trained	on	resampled	data.	We	can	try	to	use	cost	sensitive	loss	function	in	place	of	SMOTE

So,	we	can	choose	the	Final	model	as	model_h	which	is	using	dropout	and	works	on	imbalanced	dataset

Conclusion:

N	=100
plt.figure(figsize=(8,6))
plt.plot(np.arange(0,	N),	history_h.history["loss"],	label="train_loss")
plt.plot(np.arange(0,	N),	history_h.history["val_loss"],	label="val_loss")

plt.title("Training	Loss	and	Validation	loss	on	the	dataset")
plt.xlabel("Epoch	#")
plt.ylabel("train_Loss/val_loss")
plt.legend(loc="middle")
plt.show()

from	sklearn.metrics	import	roc_curve

from	matplotlib	import	pyplot

#	predict	probabilities
yhat	=	estimator_v2.predict_proba(X_test)
#	keep	probabilities	for	the	positive	outcome	only
yhat	=	yhat[:,	0]
#	calculate	roc	curves
fpr,	tpr,	thresholds	=	roc_curve(y_test,	yhat)
#	calculate	the	g-mean	for	each	threshold
gmeans	=	np.sqrt(tpr	*	(1-fpr))
#	locate	the	index	of	the	largest	g-mean
ix	=	np.argmax(gmeans)
print('Best	Threshold=%f,	G-Mean=%.3f'	%	(thresholds[ix],	gmeans[ix]))
#	plot	the	roc	curve	for	the	model
pyplot.plot([0,1],	[0,1],	linestyle='--',	label='No	Skill')
pyplot.plot(fpr,	tpr,	marker='.',	label='Logistic')
pyplot.scatter(fpr[ix],	tpr[ix],	marker='o',	color='black',	label='Best')
#	axis	labels
pyplot.xlabel('False	Positive	Rate')
pyplot.ylabel('True	Positive	Rate')
pyplot.legend()
#	show	the	plot
pyplot.show()

y_pred_h	=	estimator_v2.predict(X_test)
print(y_pred_h)

#	To	use	the	confusion	Matrix,	we	need	to	convert	the	probabilities	that	a	customer	will	leave	the	bank	into	the	form	true	or	false.	
#	So	we	will	use	the	tuned	cutoff	value	to	indicate	whether	they	are	likely	to	exit	or	not.
y_pred_h	=	(y_pred_h	>	thresholds[ix])
print(y_pred_h)

#lets	print	classification	report
from	sklearn	import	metrics
cr=metrics.classification_report(y_test,y_pred_h)
print(cr)

#Calculating	the	confusion	matrix	
cm_h=confusion_matrix(y_test,	y_pred_h)
labels	=	['True	Negative','False	Positive','False	Negative','True	Positive']
categories	=	[	'Not_Exited','Exited']
make_confusion_matrix(cm_h,	
																						group_names=labels,
																						categories=categories,	
																						cmap='Blues')



The	older	customers	are	churning	at	more	than	the	younger	ones	alluding	to	a	difference	in	service	preference	in	the	age	categories.	The
bank	may	need	to	review	their	target	market	or	review	the	strategy	for	retention	between	the	different	age	groups

With	regard	to	the	tenure,	the	clients	on	either	extreme	end	(spent	little	time	with	the	bank	or	a	lot	of	time	with	the	bank)	are	more	likely	to
churn	compared	to	those	that	are	of	average	tenure.	Worryingly,	the	bank	is	losing	customers	with	significant	bank	balances	which	is
likely	to	hit	their	available	capital	for	lending.

The	proportion	of	female	customers	churning	is	also	greater	than	that	of	male	customers	Interestingly,	majority	of	the	customers	that
churned	are	those	with	credit	cards.	Given	that	majority	of	the	customers	have	credit	cards	could	prove	this	to	be	just	a	coincidence.

Unsurprisingly	the	inactive	members	have	a	greater	churn.	Worryingly	is	that	the	overall	proportion	of	inactive	mebers	is	quite	high
suggesting	that	the	bank	may	need	a	program	implemented	to	turn	this	group	to	active	customers	as	this	will	definately	have	a	positive
impact	on	the	customer	churn
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