
Problem	Statement:
'All	You	Need'	Supermarket	is	planning	for	the	year-end	sale.	They	want	to	launch	a	new	offer	-	gold	membership	for	only	$499	which	is
\$999	on	normal	days(that	gives	a	20%	discount	on	all	purchases).

It	will	be	valid	only	for	existing	customers,	they	are	planning	to	start	a	campaign	through	phone	calls.

The	best	way	to	reduce	the	cost	of	the	campaign	is	to	make	a	predictive	model	which	will	classify	customers	who	might	purchase	the	offer,
using	the	data	they	gathered	during	last	year’s	campaign.

We	will	build	a	model	for	classifying	whether	customers	will	reply	with	a	positive	response	or	not.

Objective:
What	are	the	different	factors	which	affect	the	target	variable?	What	business	recommendations	can	we	give	based	on	the	analysis?
How	can	we	improve	model	performance	using	hyperparameter	tuning	and	prevent	data	leakage	using	pipelines	while	building	a	model
to	predict	the	response	of	a	customer?

Data	Dictionary

Response	(target)	-	1	if	customer	accepted	the	offer	in	the	last	campaign,	0	otherwise
ID	-	Unique	ID	of	each	customer
Year_Birth	-	Age	of	the	customer
Complain	-	1	if	the	customer	complained	in	the	last	2	years
Dt_Customer	-	date	of	customer's	enrollment	with	the	company
Education	-	customer's	level	of	education
Marital	-	customer's	marital	status
Kidhome	-	number	of	small	children	in	customer's	household
Teenhome	-	number	of	teenagers	in	customer's	household
Income	-	customer's	yearly	household	income
MntFishProducts	-	the	amount	spent	on	fish	products	in	the	last	2	years
MntMeatProducts	-	the	amount	spent	on	meat	products	in	the	last	2	years
MntFruits	-	the	amount	spent	on	fruits	products	in	the	last	2	years
MntSweetProducts	-	amount	spent	on	sweet	products	in	the	last	2	years
MntWines	-	the	amount	spent	on	wine	products	in	the	last	2	years
MntGoldProds	-	the	amount	spent	on	gold	products	in	the	last	2	years
NumDealsPurchases	-	number	of	purchases	made	with	discount
NumCatalogPurchases	-	number	of	purchases	made	using	catalog	(buying	goods	to	be	shipped	through	the	mail)
NumStorePurchases	-	number	of	purchases	made	directly	in	stores
NumWebPurchases	-	number	of	purchases	made	through	the	company's	website
NumWebVisitsMonth	-	number	of	visits	to	company's	website	in	the	last	month
Recency	-	number	of	days	since	the	last	purchase

Import	necessary	libraries

import	warnings

warnings.filterwarnings("ignore")
#	Libraries	to	help	with	reading	and	manipulating	data
import	pandas	as	pd
import	numpy	as	np

#	libaries	to	help	with	data	visualization
%matplotlib	inline
import	matplotlib.pyplot	as	plt
import	seaborn	as	sns

#	Libraries	to	tune	model,	get	different	metric	scores,	and	split	data
from	sklearn	import	metrics
from	sklearn.model_selection	import	train_test_split,	StratifiedKFold,	cross_val_score
from	sklearn.preprocessing	import	StandardScaler
from	sklearn.model_selection	import	GridSearchCV,	RandomizedSearchCV

from	sklearn.impute	import	KNNImputer
from	sklearn.pipeline	import	Pipeline,	make_pipeline

#libraries	to	help	with	model	building



Load	and	view	the	dataset

ID Year_Birth Education Marital_Status Income Kidhome Teenhome Dt_Customer Recency MntWines ... MntFishProducts MntSweetProducts

0 1826 1970 Graduation Divorced 84835.0 0 0 6/16/14 0 189 ... 111

1 1 1961 Graduation Single 57091.0 0 0 6/15/14 0 464 ... 7

2 10476 1958 Graduation Married 67267.0 0 1 5/13/14 0 134 ... 15

3 1386 1967 Graduation Together 32474.0 1 1 2014-11-05
00:00:00 0 10 ... 0

4 5371 1989 Graduation Single 21474.0 1 0 2014-08-04
00:00:00 0 6 ... 11

5	rows	×	22	columns

<class	'pandas.core.frame.DataFrame'>
RangeIndex:	2240	entries,	0	to	2239
Data	columns	(total	22	columns):
	#			Column															Non-Null	Count		Dtype		
---		------															--------------		-----		
	0			ID																			2240	non-null			int64		
	1			Year_Birth											2240	non-null			int64		
	2			Education												2240	non-null			object	
	3			Marital_Status							2240	non-null			object	
	4			Income															2216	non-null			float64
	5			Kidhome														2240	non-null			int64		
	6			Teenhome													2240	non-null			int64		
	7			Dt_Customer										2240	non-null			object	
	8			Recency														2240	non-null			int64		
	9			MntWines													2240	non-null			int64		
	10		MntFruits												2240	non-null			int64		
	11		MntMeatProducts						2240	non-null			int64		
	12		MntFishProducts						2240	non-null			int64		
	13		MntSweetProducts					2240	non-null			int64		
	14		MntGoldProds									2240	non-null			int64		
	15		NumDealsPurchases				2240	non-null			int64		
	16		NumWebPurchases						2240	non-null			int64		
	17		NumCatalogPurchases		2240	non-null			int64		
	18		NumStorePurchases				2240	non-null			int64		
	19		NumWebVisitsMonth				2240	non-null			int64		
	20		Response													2240	non-null			int64		
	21		Complain													2240	non-null			int64		
dtypes:	float64(1),	int64(18),	object(3)
memory	usage:	385.1+	KB

There	are	a	total	of	22	columns	and	2,240	observations	in	the	dataset
We	can	see	that	income	column	have	less	than	2,240	non-null	values	i.e.	column	have	missing	values.	We'll	explore	this	further.

Let's	check	the	number	of	unique	values	in	each	column

ID																					2240
Year_Birth															59
Education																	5
Marital_Status												8

from	sklearn.linear_model	import	LogisticRegression
from	sklearn.tree	import	DecisionTreeClassifier
from	sklearn.ensemble	import	(
				AdaBoostClassifier,
				GradientBoostingClassifier,
				RandomForestClassifier)
from	xgboost	import	XGBClassifier

data	=	pd.read_excel("marketing_data.xlsx")

data.head()

data.info()

data.nunique()



Income																	1974
Kidhome																			3
Teenhome																		3
Dt_Customer													663
Recency																	100
MntWines																776
MntFruits															158
MntMeatProducts									558
MntFishProducts									182
MntSweetProducts								177
MntGoldProds												213
NumDealsPurchases								15
NumWebPurchases										15
NumCatalogPurchases						14
NumStorePurchases								14
NumWebVisitsMonth								16
Response																		2
Complain																		2
dtype:	int64

We	can	drop	the	column	-	 ID 	as	it	is	unique	for	each	customer	and	will	not	add	value	to	the	model.

Summary	of	the	data

count mean std min 25% 50% 75% max

Year_Birth 2240.0 1968.805804 11.984069 1893.0 1959.00 1970.0 1977.00 1996.0

Income 2216.0 52247.251354 25173.076661 1730.0 35303.00 51381.5 68522.00 666666.0

Kidhome 2240.0 0.444196 0.538398 0.0 0.00 0.0 1.00 2.0

Teenhome 2240.0 0.506250 0.544538 0.0 0.00 0.0 1.00 2.0

Recency 2240.0 49.109375 28.962453 0.0 24.00 49.0 74.00 99.0

MntWines 2240.0 303.935714 336.597393 0.0 23.75 173.5 504.25 1493.0

MntFruits 2240.0 26.302232 39.773434 0.0 1.00 8.0 33.00 199.0

MntMeatProducts 2240.0 166.950000 225.715373 0.0 16.00 67.0 232.00 1725.0

MntFishProducts 2240.0 37.525446 54.628979 0.0 3.00 12.0 50.00 259.0

MntSweetProducts 2240.0 27.062946 41.280498 0.0 1.00 8.0 33.00 263.0

MntGoldProds 2240.0 44.021875 52.167439 0.0 9.00 24.0 56.00 362.0

NumDealsPurchases 2240.0 2.325000 1.932238 0.0 1.00 2.0 3.00 15.0

NumWebPurchases 2240.0 4.084821 2.778714 0.0 2.00 4.0 6.00 27.0

NumCatalogPurchases 2240.0 2.662054 2.923101 0.0 0.00 2.0 4.00 28.0

NumStorePurchases 2240.0 5.790179 3.250958 0.0 3.00 5.0 8.00 13.0

NumWebVisitsMonth 2240.0 5.316518 2.426645 0.0 3.00 6.0 7.00 20.0

Response 2240.0 0.149107 0.356274 0.0 0.00 0.0 0.00 1.0

Complain 2240.0 0.009375 0.096391 0.0 0.00 0.0 0.00 1.0

Year_Birth 	has	a	large	range	of	values	i.e.	1893	to	1996.
Columns	-	 MntFruits,	MntWines,	MntMeatProducts,	MntFishProducts,	MntSweetProducts 	might	have	outliers	on	the
right	end	as	there	is	a	large	difference	between	75th	percentile	and	maximum	values.
Recency	has	an	approx	equal	mean	and	median	which	is	equal	to	49.
Highest	mean	amount	spent	in	the	last	two	years	is	on	wines	(approx	304),	followed	by	meat	products	(approx	167).
The	distribution	of	classes	in	the	 Response 	variable	is	imbalanced	as	most	of	the	values	are	0.

Data	Preprocessing

Adding	age	of	the	customers	to	the	data	using	given	birth	years

#	Dropping	column	-	ID
data.drop(columns=["ID"],	inplace=True)

data.describe().T

#	To	calculate	age	we'll	subtract	the	year	2016	because	variables	account	for	the	last	2	years



562						20
1824					20
697						21
1468					21
964						21
							...	
1740					75
2171					76
2233				116
827					117
513					123
Name:	Age,	Length:	2240,	dtype:	int64

We	can	see	that	there	are	3	observations	with	ages	greater	than	100	i.e.	116,	117	and	123	which	is	highly	unlikely	to	be	true.
We	can	cap	the	value	for	age	variables	to	the	next	highest	value	i.e.	76.

Using	Dt_Customer	to	add	features	to	the	data

Year_Birth Education Marital_Status Income Kidhome Teenhome Dt_Customer Recency MntWines MntFruits ... NumCatalogPurchases NumStorePurchases

0 1970 Graduation Divorced 84835.0 0 0 2014-06-16 0 189 104 ... 4

1 1961 Graduation Single 57091.0 0 0 2014-06-15 0 464 5 ... 3

2 1958 Graduation Married 67267.0 0 1 2014-05-13 0 134 11 ... 2

3 1967 Graduation Together 32474.0 1 1 2014-11-05 0 10 0 ... 0

4 1989 Graduation Single 21474.0 1 0 2014-08-04 0 6 16 ... 1

5	rows	×	26	columns

Let's	check	the	count	of	each	unique	category	in	each	of	the	categorical	variables.

#	To	calculate	age	we'll	subtract	the	year	2016	because	variables	account	for	the	last	2	years
#	and	we	have	customers	registered	till	2014	only
#	We	need	to	convert	strings	values	to	dates	first	to	use	subtraction
data["Age"]	=	2016	-	pd.to_datetime(data["Year_Birth"],	format="%Y").apply(
				lambda	x:	x.year
)

data["Age"].sort_values()

#	Capping	age	variable
data["Age"].clip(upper=76,	inplace=True)

#	The	feature	Dt_Customer	represents	dates	of	the	customer’s	enrollment	with	the	company.
#	Let's	convert	this	to	DateTime	format
data["Dt_Customer"]	=	pd.to_datetime(data["Dt_Customer"])

#	Extracting	registration	year	from	the	date
data["Reg_year"]	=	data["Dt_Customer"].apply(lambda	x:	x.year)

#	Extracting	registration	quarter	from	the	date
data["Reg_quarter"]	=	data["Dt_Customer"].apply(lambda	x:	x.quarter)

#	Extracting	registration	month	from	the	date
data["Reg_month"]	=	data["Dt_Customer"].apply(lambda	x:	x.month)

#	Extracting	registration	week	from	the	date
data["Reg_week"]	=	data["Dt_Customer"].apply(lambda	x:	x.day	//	7)

data.head()

#	Making	a	list	of	all	categorical	variables
cat_col	=	[
				"Education",
				"Marital_Status",
				"Kidhome",
				"Teenhome",
				"Complain",
				"Response",
				"Reg_year",
				"Reg_quarter",
				"Reg_month",



Graduation				1127
PhD												486
Master									370
2n	Cycle							203
Basic											54
Name:	Education,	dtype:	int64
----------------------------------------
Married					864
Together				580
Single						480
Divorced				232
Widow								77
Alone									3
YOLO										2
Absurd								2
Name:	Marital_Status,	dtype:	int64
----------------------------------------
0				1293
1					899
2						48
Name:	Kidhome,	dtype:	int64
----------------------------------------
0				1158
1				1030
2						52
Name:	Teenhome,	dtype:	int64
----------------------------------------
0				2219
1						21
Name:	Complain,	dtype:	int64
----------------------------------------
0				1906
1					334
Name:	Response,	dtype:	int64
----------------------------------------
2013				1189
2014					557
2012					494
Name:	Reg_year,	dtype:	int64
----------------------------------------
4				596
1				580
2				546
3				518
Name:	Reg_quarter,	dtype:	int64
----------------------------------------
8					211
10				209
3					202
12				202
5					192
1					191
2					187
11				185
4					184
6					170
9					166
7					141
Name:	Reg_month,	dtype:	int64
----------------------------------------
1				523
2				500
3				490
0				462
4				265
Name:	Reg_week,	dtype:	int64
----------------------------------------

In	education,	2n	cycle	and	Master	means	the	same	thing.	We	can	combine	these	two	categories.
There	are	many	categories	in	marital	status.	We	can	combine	the	categories	'Alone',	'Absurd'	and	'YOLO'	with	'Single'	and	'Together'
categories	with	'Married'.
There	are	only	21	customers	who	complained	in	the	last	two	years.

				"Reg_week",
]

#	Printing	number	of	count	of	each	unique	value	in	each	column
for	column	in	cat_col:
				print(data[column].value_counts())
				print("-"	*	40)



We	have	1906	observations	for	the	0	class	but	only	334	observations	for	class	1.
There	are	only	three	years	in	the	customer	registration	data.

Imputing	missing	values	in	income	column

Year_Birth														0
Education															0
Marital_Status										0
Income																	24
Kidhome																	0
Teenhome																0
Dt_Customer													0
Recency																	0
MntWines																0
MntFruits															0
MntMeatProducts									0
MntFishProducts									0
MntSweetProducts								0
MntGoldProds												0
NumDealsPurchases							0
NumWebPurchases									0
NumCatalogPurchases					0
NumStorePurchases							0
NumWebVisitsMonth							0
Response																0
Complain																0
Age																					0
Reg_year																0
Reg_quarter													0
Reg_month															0
Reg_week																0
dtype:	int64

1.07

We	can	add	a	column	-	total	amount	spent	by	each	customer	in	the	last	2	years

EDA

Univariate

#	Replacing	2n	Cycle	with	Master
data["Education"]	=	data["Education"].replace("2n	Cycle",	"Master")

#	Replacing	YOLO,	Alone,	Absurd	with	single	and	Together	with	Married
data["Marital_Status"]	=	data["Marital_Status"].replace(
				["YOLO",	"Alone",	"Absurd"],	"Single"
)
data["Marital_Status"]	=	data["Marital_Status"].replace(["Together"],	"Married")

#	number	of	missing	values	in	each	column
data.isnull().sum()

#	Percentage	of	missing	values	in	income	column
round(data.isna().sum()	/	data.isna().count()	*	100,	2)["Income"]

data["Total_Amount_Spent"]	=	data[
				[
								"MntWines",
								"MntFruits",
								"MntMeatProducts",
								"MntFishProducts",
								"MntSweetProducts",
								"MntGoldProds",
				]
].sum(axis=1)

#	While	doing	uni-variate	analysis	of	numerical	variables	we	want	to	study	their	central	tendency
#	and	dispersion.



As	per	the	boxplot,	there	are	no	outliers	in	the	'Age'	variable
Age	has	a	fairly	normal	distribution	with	approx	equal	mean	and	median

#	Let	us	write	a	function	that	will	help	us	create	a	boxplot	and	histogram	for	any	input	numerical
#	variable.
#	This	function	takes	the	numerical	column	as	the	input	and	returns	the	boxplots
#	and	histograms	for	the	variable.
#	Let	us	see	if	this	helps	us	write	faster	and	cleaner	code.
def	histogram_boxplot(feature,	figsize=(15,	10),	bins=None):
				"""Boxplot	and	histogram	combined
				feature:	1-d	feature	array
				figsize:	size	of	fig	(default	(9,8))
				bins:	number	of	bins	(default	None	/	auto)
				"""
				f2,	(ax_box2,	ax_hist2)	=	plt.subplots(
								nrows=2,		#	Number	of	rows	of	the	subplot	grid=	2
								sharex=True,		#	x-axis	will	be	shared	among	all	subplots
								gridspec_kw={"height_ratios":	(0.25,	0.75)},
								figsize=figsize,
				)		#	creating	the	2	subplots
				sns.boxplot(
								feature,	ax=ax_box2,	showmeans=True,	color="violet"
				)		#	boxplot	will	be	created	and	a	star	will	indicate	the	mean	value	of	the	column
				sns.distplot(
								feature,	kde=F,	ax=ax_hist2,	bins=bins,	palette="winter"
				)	if	bins	else	sns.distplot(
								feature,	kde=False,	ax=ax_hist2
				)		#	For	histogram
				ax_hist2.axvline(
								np.mean(feature),	color="green",	linestyle="--"
				)		#	Add	mean	to	the	histogram
				ax_hist2.axvline(
								np.median(feature),	color="black",	linestyle="-"
				)		#	Add	median	to	the	histogram

#	Observations	on	Customer_age
histogram_boxplot(data["Age"])

#	observations	on	Income
histogram_boxplot(data["Income"])



We	can	see	there	are	some	outliers	in	the	income	variable.
Some	variation	is	always	expected	in	real-world	scenarios	for	the	income	variable	but	we	can	remove	the	data	point	on	the	extreme	right
end	of	the	boxplot	as	it	can	be	a	data	entry	error.

#	Dropping	observaion	with	income	greater	than	20000.	There	is	just	1	such	observation
data.drop(index=data[data.Income	>	200000].index,	inplace=True)

#	observations	on	Recency
histogram_boxplot(data["Recency"])



There	are	no	outliers	in	the	'Recency'	variable
The	distribution	is	fairly	symmetric	and	uniformly	distributed.

The	distribution	for	the	amount	spent	on	wines	is	highly	skewed	to	the	right
As	the	median	of	the	distribution	is	less	than	200,	more	than	50%	of	customers	have	spent	less	than	200	on	wines.
There	are	some	outliers	on	the	right	end	of	the	boxplot	but	we	will	not	treat	them	as	some	variation	is	always	expected	in	real-world
scenarios	for	variables	like	amount	spent.

#	observations	on	MntWines
histogram_boxplot(data["MntWines"])

#	observations	on	MntFruits
histogram_boxplot(data["MntFruits"])



The	distribution	for	the	amount	spent	on	fruits	is	highly	skewed	to	the	right.
As	the	median	of	the	distribution	is	less	than	20,	more	than	50%	of	customers	have	spent	less	than	20	on	fruits.
There	are	some	outliers	on	the	right	end	of	the	boxplot	but	we	will	not	treat	them	as	some	variation	is	always	expected	in	real-world
scenarios	for	variables	like	amount	spent.

The	distribution	for	the	amount	spent	on	meat	products	is	highly	skewed	to	the	right.
We	can	see	that	there	are	some	extreme	observations	in	the	variable	that	can	be	considered	as	outliers	as	they	very	far	from	the	rest	of
the	values.
We	can	cap	the	value	of	the	variable	to	the	next	highest	value.

325					1725
961					1725
497					1622
1213				1607
2204				1582
1921					984
53							981
994						974
2021					968
1338					961
Name:	MntMeatProducts,	dtype:	int64

#	observations	on	MntMeatProducts
histogram_boxplot(data["MntMeatProducts"])

#	Checking	5	largest	values	of	amount	spend	on	meat	products
data.MntMeatProducts.nlargest(10)



The	distribution	for	the	amount	spent	on	fish	products	is	right-skewed
There	are	some	outliers	on	the	right	end	in	the	boxplot	but	we	will	not	treat	them	as	this	represents	a	real	market	trend	that	some
customers	spend	more	on	fish	products	than	others.

#	Capping	values	for	amount	spent	on	meat	products	at	next	highest	value	i.e.	984
data["MntMeatProducts"].clip(upper=984,	inplace=True)

#	observations	on	MntFishProducts
histogram_boxplot(data["MntFishProducts"])

#	observations	on	MntSweetProducts
histogram_boxplot(data["MntSweetProducts"])



The	distribution	for	the	amount	spent	on	sweet	products	is	right-skewed
There	is	one	observation	to	the	right	extreme	which	can	be	considered	as	an	outlier.
We	will	not	remove	all	such	data	points	as	they	represent	real	market	trends	but	we	can	cap	some	of	the	extreme	values.

The	distribution	for	the	amount	spent	on	gold	products	is	right-skewed
There	are	some	outliers	in	the	amount	spent	on	gold	products.	We	will	not	remove	all	such	data	points	as	they	represent	real	market
trends	but	we	can	cap	some	of	the	extreme	values.

#	Capping	values	for	amount	spent	on	sweet	products	at	198
data["MntSweetProducts"].clip(upper=198,	inplace=True)

#	observations	on	MntGoldProds
histogram_boxplot(data["MntGoldProds"])

#	Capping	values	for	amount	spent	on	gold	products	at	250
data["MntGoldProds"].clip(upper=250,	inplace=True)

#	observations	on	NumDealsPurchases
histogram_boxplot(data["NumDealsPurchases"])



Majority	of	the	customers	have	2	or	less	than	2	deal	purchases.
We	can	see	that	there	some	extreme	observations	in	the	variable.	This	represents	the	real	market	trend.

The	median	of	the	distribution	is	4	i.e.	50%	of	customers	have	4	or	less	than	4	web	purchases.
We	can	see	that	there	are	some	extreme	observations	in	the	variable.	We	can	cap	these	values	to	the	next	highest	number	of
purchases.

#	observations	on	NumWebPurchases
histogram_boxplot(data["NumWebPurchases"])

#	Capping	values	for	number	of	web	purchases	at	11
data["NumWebPurchases"].clip(upper=11,	inplace=True)

#	observations	on	NumCatalogPurchases



The	most	number	of	observations	are	for	0	catalog	purchases.
The	median	of	the	distribution	is	2	i.e.	50%	of	customers	have	2	or	less	than	2	catalog	purchases.
We	can	see	that	there	is	two	extreme	observation	in	the	variable.	We	can	cap	these	values	to	the	next	highest	number	of	purchases.

#	observations	on	NumCatalogPurchases
histogram_boxplot(data["NumCatalogPurchases"])

#	Capping	values	for	number	of	catalog	purchases	at	11
data["NumCatalogPurchases"].clip(upper=11,	inplace=True)

#	observations	on	NumStorePurchases
histogram_boxplot(data["NumStorePurchases"])



There	are	very	few	observations	with	less	than	2	purchases	from	the	store
Most	of	the	customers	have	4	or	5	purchases	from	the	store
There	are	no	outliers	in	this	variable

The	distribution	for	the	number	of	visits	in	a	month	is	skewed	and	has	some	outliers	at	the	right	end.
We	will	not	treat	this	as	this	represents	a	general	market	trend

#	observations	on	NumWebVisitsMonth
histogram_boxplot(data["NumWebVisitsMonth"])

def	perc_on_bar(feature):
				"""
				plot
				feature:	categorical	feature
				the	function	won't	work	if	a	column	is	passed	in	the	hue	parameter
				"""
				#	Creating	a	countplot	for	the	feature
				sns.set(rc={"figure.figsize":	(10,	5)})
				ax	=	sns.countplot(x=feature,	data=data)

				total	=	len(feature)		#	length	of	the	column
				for	p	in	ax.patches:
								percentage	=	"{:.1f}%".format(
												100	*	p.get_height()	/	total
								)		#	percentage	of	each	class	of	the	category
								x	=	p.get_x()	+	p.get_width()	/	2	-	0.1		#	width	of	the	plot
								y	=	p.get_y()	+	p.get_height()		#	hieght	of	the	plot
								ax.annotate(percentage,	(x,	y),	size=14)		#	annotate	the	percantage

				plt.show()		#	show	the	plot

#	observations	on	Marital_Status
perc_on_bar(data["Marital_Status"])



Majority	of	the	customers	are	married	comprising	approx	64%	of	total	customers.

Education	of	approx	50%	of	customers	is	at	graduation	level.
Very	few	observations	i.e.	~2%	for	customers	with	basic	level	education

~40%	of	customers	have	1	kid	and	~58%	of	customers	have	no	kids	at	home
There	are	very	few	customers,	approx	2%,	with	a	number	of	kids	greater	than	1

#	observations	on	Education
perc_on_bar(data["Education"])

#	observations	on	Kidhome
perc_on_bar(data["Kidhome"])



Majority	of	the	customers	i.e.	~52%	customers	have	no	teen	at	home
There	are	very	few	customers,	only	~2%,	with	a	number	of	teens	greater	than	1

Approx	99%	of	customers	had	no	complaint	in	the	last	2	years.	This	might	be	because	the	company	provides	good	services	or	might	be
due	to	the	lack	of	feedback	options	for	customers.

#	observations	on	Teenhome
perc_on_bar(data["Teenhome"])

#	observations	on	Complain
perc_on_bar(data["Complain"])

#	observations	on	Registration	year
perc_on_bar(data["Reg_year"])



The	number	of	customers	registered	is	highest	in	the	year	2013.

There	is	no	significant	difference	in	the	number	of	registrations	for	each	quarter.
The	number	of	registrations	is	slightly	higher	for	the	1st	and	the	4th	quarter.	This	can	be	due	to	the	festival	season	in	these	months.
Let's	explore	this	further	by	plotting	the	count	of	registration	per	month.

This	shows	that	the	highest	number	of	registration	is	in	the	months	of	winters	i.e.	March,	August,	October	&	December
There	is	approx	3%	reduction	in	the	number	of	registrations	from	June	to	July.

#	observations	on	Registration	quarter
perc_on_bar(data["Reg_quarter"])

#	observations	on	Registration	month
perc_on_bar(data["Reg_month"])

#	observations	on	Registration	week
perc_on_bar(data["Reg_week"])



This	shows	that	the	number	of	registrations	declines	at	the	end	of	the	month	i.e.	in	the	last	two	weeks.
This	can	be	because	most	people	get	salaries	on	the	last	day	or	first	day	of	the	month.

Approx	85%	customer's	response	was	NO	in	the	last	campaign.
This	shows	that	the	distribution	of	classes	in	the	target	variable	is	imbalanced.	We	have	only	~15%	observations	where	the	response	is
YES.

Bivariate	Analysis

<seaborn.axisgrid.PairGrid	at	0x167f26990>

#	observations	on	Response
perc_on_bar(data["Response"])

sns.pairplot(data,	hue="Response")



There	are	overlaps	i.e.	no	clear	distinction	in	the	distribution	of	variables	for	people	who	have	taken	the	product	and	did	not	take	the
product.
Let's	explore	this	further	with	the	help	of	other	plots.

<AxesSubplot:xlabel='Marital_Status',	ylabel='Total_Amount_Spent'>

We	can	see	that	the	total	amount	spent	is	higher	for	widowed	customers.
No	significant	difference	in	the	amount	spent	by	single,	married	or	divorced	customers.

<AxesSubplot:xlabel='Education',	ylabel='Total_Amount_Spent'>

sns.set(rc={"figure.figsize":	(10,	7)})
sns.boxplot(y="Total_Amount_Spent",	x="Marital_Status",	data=data,	orient="vertical")

sns.boxplot(y="Total_Amount_Spent",	x="Education",	data=data,	orient="vertical")



As	expected,	the	amount	spent	increases	with	the	increase	in	education	level.
Customers	with	graduate-level	education	spend	slightly	more	than	customers	with	master-level	education.

<AxesSubplot:xlabel='Reg_year,Reg_month'>

The	plot	clearly	shows	that	the	total	amount	spent	has	declined	over	the	years.
The	plot	shows	the	highest	increase	in	the	amount	spent	from	August	to	September	2012.

<AxesSubplot:xlabel='Income',	ylabel='Total_Amount_Spent'>

pd.pivot_table(
				data=data,
				index=["Reg_year",	"Reg_month"],
				values="Total_Amount_Spent",
				aggfunc=np.sum,
).plot(kind="line",	marker="o",	linewidth=2)

sns.regplot(y=data.Total_Amount_Spent,	x=data.Income)



We	can	see	that	income	and	the	total	amount	spent	have	a	positive	correlation.
The	total	amount	spent	is	not	much	different	for	customers	with	income	in	the	range	of	20K	to	60K	but	the	difference	is	significant	for
customers	in	the	range	of	60K	to	100K.

Each	plot	shows	that	customer	spending	more	on	any	product	is	more	likely	to	take	the	offer.

cols	=	data[
				[
								"MntWines",
								"MntGoldProds",
								"MntMeatProducts",
								"MntFruits",
								"MntFishProducts",
								"MntSweetProducts",
				]
].columns.tolist()
plt.figure(figsize=(10,	10))

for	i,	variable	in	enumerate(cols):
				plt.subplot(3,	2,	i	+	1)
				sns.boxplot(data["Response"],	data[variable])
				plt.tight_layout()
				plt.title(variable)
plt.show()



Customers	with	lower	recency	i.e.	less	number	of	days	since	the	last	purchase,	are	more	likely	to	take	the	offer.
Response	does	not	depend	much	on	age.
Customers	with	higher	income	are	more	likely	to	take	the	offer.
Customers	who	spent	more	in	the	last	2	years	are	more	likely	to	take	the	offer.

Response							0				1			All
Education																		
Basic									52				2				54
Graduation			974		152		1126
Master							494			79			573
PhD										385		101			486
All									1905		334		2239
-----------------------------------------------------------------------------------------------------------------
-------

cols	=	data[["Recency",	"Age",	"Income",	"Total_Amount_Spent"]].columns.tolist()
plt.figure(figsize=(10,	10))

for	i,	variable	in	enumerate(cols):
				plt.subplot(3,	2,	i	+	1)
				sns.boxplot(data["Response"],	data[variable])
				plt.tight_layout()
				plt.title(variable)
plt.show()

###	Function	to	plot	stacked	bar	charts	for	categorical	columns
def	stacked_plot(x):
				sns.set(palette="nipy_spectral")
				tab1	=	pd.crosstab(x,	data["Response"],	margins=True)
				print(tab1)
				print("-"	*	120)
				tab	=	pd.crosstab(x,	data["Response"],	normalize="index")
				tab.plot(kind="bar",	stacked=True,	figsize=(10,	5))
				plt.legend(loc="lower	left",	frameon=False)
				plt.legend(loc="upper	left",	bbox_to_anchor=(1,	1))
				plt.show()

stacked_plot(data["Education"])



We	can	see	a	clear	trend	here	that	customers	with	higher	education	are	more	likely	to	take	the	offer.

Response											0				1			All
Marital_Status																	
Divorced									184			48			232
Married									1285		158		1443
Single											378		109			487
Widow													58			19				77
All													1905		334		2239
-----------------------------------------------------------------------------------------------------------------
-------

We	saw	earlier	that	number	of	married	customers	is	much	more	than	single	or	divorced	but	divorced/widow	customers	are	more	likely	to
take	the	offer.
Single	customers	are	more	likely	to	take	the	offer	than	married	customers.

Response					0				1			All
Kidhome																		
0									1071		222		1293
1										788		110			898
2											46				2				48
All							1905		334		2239
-----------------------------------------------------------------------------------------------------------------
-------

stacked_plot(data["Marital_Status"])

stacked_plot(data["Kidhome"])



We	can	see	that	the	number	of	kids	increases,	chances	of	customers	taking	the	offer	decreases.
Customers	with	no	kids	at	home	are	more	likely	to	take	the	offer	which	can	be	expected	as	this	includes	single	customers	as	well.

Response					0				1			All
Teenhome																	
0										920		237		1157
1										938			92		1030
2											47				5				52
All							1905		334		2239
-----------------------------------------------------------------------------------------------------------------
-------

Customers	with	no	teens	at	home	are	most	likely	to	take	the	offer.
Customers	with	two	teens	are	more	likely	to	take	the	offer	than	customers	with	1	teenager.

Response					0				1			All
Reg_year																	
2012							362		132			494
2013						1034		154		1188
2014							509			48			557
All							1905		334		2239
-----------------------------------------------------------------------------------------------------------------
-------

stacked_plot(data["Teenhome"])

stacked_plot(data["Reg_year"])



Number	of	customers	taking	the	offer	is	decreasing	each	subsequent	year.
Let's	explore	this	further	for	month-wise	distribution	for	each	of	the	year.

As	expected,	age	and	year	of	birth	have	a	high	negative	correlation.	We	can	drop	one	of	them.
Registration	month,	quarter	and	year	columns	are	highly	correlated	which	can	be	expected	as	we	extracted	these	columns	from	the
same	column.
We	can	drop	one	of	the	columns	in	a	quarter	or	month	as	they	are	almost	perfectly	correlated.
Total	amount	spent	is	correlated	with	variables	they	are	associated	with.	We	can	drop	this	column.

sns.set(rc={"figure.figsize":	(15,	15)})
sns.heatmap(
				data.corr(),
				annot=True,
				linewidths=0.5,
				center=0,
				cbar=False,
				cmap="YlGnBu",
				fmt="0.2f",
)
plt.show()



Data	Preparation

Split	the	data	into	train	and	test	sets

(1567,	22)	(672,	22)

Missing-Value	Treatment

We	will	use	KNN	imputer	to	impute	missing	values.
KNNImputer :	Each	sample's	missing	values	are	imputed	by	looking	at	the	n_neighbors	nearest	neighbors	found	in	the	training	set.
Default	value	for	n_neighbors=5.
KNN	imputer	replaces	missing	values	using	the	average	of	k	nearest	non-missing	feature	values.
Nearest	points	are	found	based	on	euclidean	distance.

Education														0
Marital_Status									0
Income																	0
Kidhome																0
Teenhome															0
Recency																0
MntWines															0
MntFruits														0
MntMeatProducts								0
MntFishProducts								0
MntSweetProducts							0
MntGoldProds											0
NumDealsPurchases						0
NumWebPurchases								0
NumCatalogPurchases				0
NumStorePurchases						0
NumWebVisitsMonth						0

education	=	{'Basic':1,	'Graduation':2,	'Master':3,	'PhD':4}
data['Education']=data['Education'].map(education)
marital_status	=	{'Married':1,'Single':2,	'Divorced':3,	'Widow':4}
data['Marital_Status']=data['Marital_Status'].map(marital_status)

#	Separating	target	variable	and	other	variables
X	=	data.drop(columns="Response")
Y	=	data["Response"]

#	Dropping	birth	year	and	Dt_Customer	columns
X.drop(
				columns=[
								"Year_Birth",
								"Dt_Customer",
								"Reg_quarter",
								"Total_Amount_Spent",
				],
				inplace=True,
)

#	Splitting	the	data	into	train	and	test	sets
X_train,	X_test,	y_train,	y_test	=	train_test_split(
				X,	Y,	test_size=0.30,	random_state=1,	stratify=Y
)
print(X_train.shape,	X_test.shape)

imputer	=	KNNImputer(n_neighbors=5)

#Fit	and	transform	the	train	data
X_train=pd.DataFrame(imputer.fit_transform(X_train),columns=X_train.columns)

#Transform	the	test	data	
X_test=pd.DataFrame(imputer.fit_transform(X_test),columns=X_test.columns)

#Checking	that	no	column	has	missing	values	in	train	or	test	sets
print(X_train.isna().sum())
print('-'*30)
print(X_test.isna().sum())



Complain															0
Age																				0
Reg_year															0
Reg_month														0
Reg_week															0
dtype:	int64
------------------------------
Education														0
Marital_Status									0
Income																	0
Kidhome																0
Teenhome															0
Recency																0
MntWines															0
MntFruits														0
MntMeatProducts								0
MntFishProducts								0
MntSweetProducts							0
MntGoldProds											0
NumDealsPurchases						0
NumWebPurchases								0
NumCatalogPurchases				0
NumStorePurchases						0
NumWebVisitsMonth						0
Complain															0
Age																				0
Reg_year															0
Reg_month														0
Reg_week															0
dtype:	int64

All	missing	values	have	been	treated.
Let's	inverse	map	the	encoded	values.

Checking	inverse	mapped	values/categories.

Graduation				793
Master								420
PhD											316
Basic										38
Name:	Education,	dtype:	int64
******************************
Married					993
Single						346
Divorced				168
Widow								60
Name:	Marital_Status,	dtype:	int64
******************************

Graduation				333
PhD											170
Master								153
Basic										16
Name:	Education,	dtype:	int64

##	Function	to	inverse	the	encoding
def	inverse_mapping(x,y):
				inv_dict	=	{v:	k	for	k,	v	in	x.items()}
				X_train[y]	=	np.round(X_train[y]).map(inv_dict).astype('category')
				X_test[y]	=	np.round(X_test[y]).map(inv_dict).astype('category')

inverse_mapping(education,'Education')
inverse_mapping(marital_status,'Marital_Status')

cols	=	X_train.select_dtypes(include=['object','category'])
for	i	in	cols.columns:
				print(X_train[i].value_counts())
				print('*'*30)

cols	=	X_test.select_dtypes(include=['object','category'])
for	i	in	cols.columns:
				print(X_test[i].value_counts())
				print('*'*30)



******************************
Married					450
Single						141
Divorced					64
Widow								17
Name:	Marital_Status,	dtype:	int64
******************************

Inverse	mapping	returned	original	labels.

Encoding	categorical	varaibles

(1567,	26)	(672,	26)

After	encoding	there	are	26	columns.

Building	the	model

Model	evaluation	criterion:

Model	can	make	wrong	predictions	as:

1.	 Predicting	a	customer	will	buy	the	product	and	the	customer	doesn't	buy	-	Loss	of	resources
2.	 Predicting	a	customer	will	not	buy	the	product	and	the	customer	buys	-	Loss	of	opportunity

Which	case	is	more	important?

Predicting	that	customer	will	not	buy	the	product	but	he	buys	i.e.	losing	on	a	potential	source	of	income	for	the	company	because	that
customer	will	not	be	targeted	by	the	marketing	team	when	he	should	be	targeted.

How	to	reduce	this	loss	i.e	need	to	reduce	False	Negatives?

Company	wants	Recall	to	be	maximized,	greater	the	Recall	lesser	the	chances	of	false	negatives.

Let's	start	by	building	different	models	using	KFold	and	cross_val_score	with	pipelines	and	tune	the	best	model	using
GridSearchCV	and	RandomizedSearchCV

Stratified	K-Folds	cross-validation 	provides	dataset	indices	to	split	data	into	train/validation	sets.	Split	dataset	into	k
consecutive	folds	(without	shuffling	by	default)	keeping	the	distribution	of	both	classes	in	each	fold	the	same	as	the	target	variable.	Each
fold	is	then	used	once	as	validation	while	the	k	-	1	remaining	folds	form	the	training	set.

X_train=pd.get_dummies(X_train,drop_first=True)
X_test=pd.get_dummies(X_test,drop_first=True)
print(X_train.shape,	X_test.shape)

models	=	[]		#	Empty	list	to	store	all	the	models

#	Appending	pipelines	for	each	model	into	the	list
models.append(
				(
								"LR",
								Pipeline(
												steps=[
																("scaler",	StandardScaler()),
																("log_reg",	LogisticRegression(random_state=1)),
												]
								),
				)
)
models.append(
				(
								"RF",
								Pipeline(
												steps=[
																("scaler",	StandardScaler()),
																("random_forest",	RandomForestClassifier(random_state=1)),
												]
								),
				)



LR:	30.814061054579096
RF:	19.22294172062905
GBM:	30.74005550416281
ADB:	37.6040703052729
XGB:	29.92599444958372
DTREE:	38.880666049953746

)
models.append(
				(
								"GBM",
								Pipeline(
												steps=[
																("scaler",	StandardScaler()),
																("gradient_boosting",	GradientBoostingClassifier(random_state=1)),
												]
								),
				)
)
models.append(
				(
								"ADB",
								Pipeline(
												steps=[
																("scaler",	StandardScaler()),
																("adaboost",	AdaBoostClassifier(random_state=1)),
												]
								),
				)
)
models.append(
				(
								"XGB",
								Pipeline(
												steps=[
																("scaler",	StandardScaler()),
																("xgboost",	XGBClassifier(random_state=1,eval_metric='logloss')),
												]
								),
				)
)
models.append(
				(
								"DTREE",
								Pipeline(
												steps=[
																("scaler",	StandardScaler()),
																("decision_tree",	DecisionTreeClassifier(random_state=1)),
												]
								),
				)
)

results	=	[]		#	Empty	list	to	store	all	model's	CV	scores
names	=	[]		#	Empty	list	to	store	name	of	the	models

#	loop	through	all	models	to	get	the	mean	cross	validated	score
for	name,	model	in	models:
				scoring	=	"recall"
				kfold	=	StratifiedKFold(
								n_splits=5,	shuffle=True,	random_state=1
				)		#	Setting	number	of	splits	equal	to	5
				cv_result	=	cross_val_score(
								estimator=model,	X=X_train,	y=y_train,	scoring=scoring,	cv=kfold
				)
				results.append(cv_result)
				names.append(name)
				print("{}:	{}".format(name,	cv_result.mean()	*	100))

models	=	[]		#	Empty	list	to	store	all	the	models

#	Appending	pipelines	for	each	model	into	the	list
models.append(
				(
								"LR",
								Pipeline(
												steps=[
																("scaler",	StandardScaler()),
																("log_reg",	LogisticRegression(random_state=1)),
												]
								),
				)
)
models.append(
				(



LR:	30.814061054579096
RF:	19.22294172062905
GBM:	30.74005550416281
ADB:	37.6040703052729
XGB:	29.92599444958372
DTREE:	38.880666049953746

								"RF",
								Pipeline(
												steps=[
																("scaler",	StandardScaler()),
																("random_forest",	RandomForestClassifier(random_state=1)),
												]
								),
				)
)
models.append(
				(
								"GBM",
								Pipeline(
												steps=[
																("scaler",	StandardScaler()),
																("gradient_boosting",	GradientBoostingClassifier(random_state=1)),
												]
								),
				)
)
models.append(
				(
								"ADB",
								Pipeline(
												steps=[
																("scaler",	StandardScaler()),
																("adaboost",	AdaBoostClassifier(random_state=1)),
												]
								),
				)
)
models.append(
				(
								"XGB",
								Pipeline(
												steps=[
																("scaler",	StandardScaler()),
																("xgboost",	XGBClassifier(random_state=1,eval_metric='logloss')),
												]
								),
				)
)
models.append(
				(
								"DTREE",
								Pipeline(
												steps=[
																("scaler",	StandardScaler()),
																("decision_tree",	DecisionTreeClassifier(random_state=1)),
												]
								),
				)
)

results	=	[]		#	Empty	list	to	store	all	model's	CV	scores
names	=	[]		#	Empty	list	to	store	name	of	the	models

#	loop	through	all	models	to	get	the	mean	cross	validated	score
for	name,	model	in	models:
				scoring	=	"recall"
				kfold	=	StratifiedKFold(
								n_splits=5,	shuffle=True,	random_state=1
				)		#	Setting	number	of	splits	equal	to	5
				cv_result	=	cross_val_score(
								estimator=model,	X=X_train,	y=y_train,	scoring=scoring,	cv=kfold
				)
				results.append(cv_result)
				names.append(name)
				print("{}:	{}".format(name,	cv_result.mean()	*	100))

#	Plotting	boxplots	for	CV	scores	of	all	models	defined	above
fig	=	plt.figure(figsize=(10,	7))

fig.suptitle("Algorithm	Comparison")
ax	=	fig.add_subplot(111)

plt.boxplot(results)
ax.set_xticklabels(names)



We	can	see	that	AdaBoost	is	giving	the	highest	cross-validated	recall	followed	by	XGBoost
The	boxplot	shows	that	the	performance	of	both	the	models	is	consistent	with	just	one	outlier	for	AdaBoost.
We	will	tune	both	models	-	AdaBoost	and	XGBoost	and	see	if	the	performance	improves.

Hyperparameter	Tuning

We	will	use	pipelines	with	StandardScaler	and	AdaBoost	model	and	tune	the	model	using	GridSearchCV	and
RandomizedSearchCV.	We	will	also	compare	the	performance	and	time	taken	by	these	two	methods	-	grid	search	and	randomized
search.

We	can	also	use	the	make_pipeline	function	instead	of	Pipeline	to	create	a	pipeline.

make_pipeline :	This	is	a	shorthand	for	the	Pipeline	constructor;	it	does	not	require	and	does	not	permit,	naming	the	estimators.
Instead,	their	names	will	be	set	to	the	lowercase	of	their	types	automatically.

First,	let's	create	two	functions	to	calculate	different	metrics	and	confusion	matrix	so	that	we	don't	have	to	use	the	same	code
repeatedly	for	each	model.

plt.show()

##		Function	to	calculate	different	metric	scores	of	the	model	-	Accuracy,	Recall	and	Precision
def	get_metrics_score(model,	flag=True):
				"""
				model:	classifier	to	predict	values	of	X

				"""
				#	defining	an	empty	list	to	store	train	and	test	results
				score_list	=	[]

				pred_train	=	model.predict(X_train)
				pred_test	=	model.predict(X_test)

				train_acc	=	model.score(X_train,	y_train)
				test_acc	=	model.score(X_test,	y_test)

				train_recall	=	metrics.recall_score(y_train,	pred_train)
				test_recall	=	metrics.recall_score(y_test,	pred_test)

				train_precision	=	metrics.precision_score(y_train,	pred_train)
				test_precision	=	metrics.precision_score(y_test,	pred_test)

				score_list.extend(
								(
												train_acc,
												test_acc,
												train_recall,
												test_recall,



AdaBoost

GridSearchCV

Best	Parameters:{'adaboostclassifier__base_estimator':	DecisionTreeClassifier(max_depth=2,	random_state=1),	'adab
oostclassifier__learning_rate':	1,	'adaboostclassifier__n_estimators':	100}	
Score:	0.4830712303422756
CPU	times:	user	6.04	s,	sys:	635	ms,	total:	6.68	s
Wall	time:	51.6	s

												train_precision,
												test_precision,
								)
				)

				#	If	the	flag	is	set	to	True	then	only	the	following	print	statements	will	be	dispayed.	The	default	value	is	set	to	True.
				if	flag	==	True:
								print("Accuracy	on	training	set	:	",	model.score(X_train,	y_train))
								print("Accuracy	on	test	set	:	",	model.score(X_test,	y_test))
								print("Recall	on	training	set	:	",	metrics.recall_score(y_train,	pred_train))
								print("Recall	on	test	set	:	",	metrics.recall_score(y_test,	pred_test))
								print(
												"Precision	on	training	set	:	",	metrics.precision_score(y_train,	pred_train)
								)
								print("Precision	on	test	set	:	",	metrics.precision_score(y_test,	pred_test))

				return	score_list		#	returning	the	list	with	train	and	test	scores

##	Function	to	create	confusion	matrix
def	make_confusion_matrix(model,	y_actual,	labels=[1,	0]):
				"""
				model:	classifier	to	predict	values	of	X
				y_actual:	ground	truth

				"""
				y_predict	=	model.predict(X_test)
				cm	=	metrics.confusion_matrix(y_actual,	y_predict,	labels=[0,	1])
				df_cm	=	pd.DataFrame(
								cm,
								index=[i	for	i	in	["Actual	-	No",	"Actual	-	Yes"]],
								columns=[i	for	i	in	["Predicted	-	No",	"Predicted	-	Yes"]],
				)
				group_counts	=	["{0:0.0f}".format(value)	for	value	in	cm.flatten()]
				group_percentages	=	["{0:.2%}".format(value)	for	value	in	cm.flatten()	/	np.sum(cm)]
				labels	=	[f"{v1}\n{v2}"	for	v1,	v2	in	zip(group_counts,	group_percentages)]
				labels	=	np.asarray(labels).reshape(2,	2)
				plt.figure(figsize=(10,	7))
				sns.heatmap(df_cm,	annot=labels,	fmt="")
				plt.ylabel("True	label")
				plt.xlabel("Predicted	label")

%%time	

#	Creating	pipeline
pipe	=	make_pipeline(StandardScaler(),	AdaBoostClassifier(random_state=1))

#	Parameter	grid	to	pass	in	GridSearchCV
param_grid	=	{
				"adaboostclassifier__n_estimators":	np.arange(10,	110,	10),
				"adaboostclassifier__learning_rate":	[0.1,	0.01,	0.2,	0.05,	1],
				"adaboostclassifier__base_estimator":	[
								DecisionTreeClassifier(max_depth=1,	random_state=1),
								DecisionTreeClassifier(max_depth=2,	random_state=1),
								DecisionTreeClassifier(max_depth=3,	random_state=1),
				],
}

#	Type	of	scoring	used	to	compare	parameter	combinations
scorer	=	metrics.make_scorer(metrics.recall_score)

#	Calling	GridSearchCV
grid_cv	=	GridSearchCV(estimator=pipe,	param_grid=param_grid,	scoring=scorer,	cv=5,	n_jobs	=	-1)

#	Fitting	parameters	in	GridSeachCV
grid_cv.fit(X_train,	y_train)

print(
				"Best	Parameters:{}	\nScore:	{}".format(grid_cv.best_params_,	grid_cv.best_score_)
)

%%time	



Best	Parameters:{'adaboostclassifier__base_estimator':	DecisionTreeClassifier(max_depth=2,	random_state=1),	'adab
oostclassifier__learning_rate':	1,	'adaboostclassifier__n_estimators':	100}	
Score:	0.4830712303422756
CPU	times:	user	5.97	s,	sys:	638	ms,	total:	6.61	s
Wall	time:	58.5	s

Pipeline(steps=[('standardscaler',	StandardScaler()),
																('adaboostclassifier',
																	AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=2,
																																																																										random_state=1),
																																				learning_rate=1,	n_estimators=100,
																																				random_state=1))])

Accuracy	on	training	set	:		0.9929802169751116
Accuracy	on	test	set	:		0.8586309523809523
Recall	on	training	set	:		0.9786324786324786
Recall	on	test	set	:		0.44
Precision	on	training	set	:		0.9744680851063829
Precision	on	test	set	:		0.5301204819277109

%%time	

#	Creating	pipeline
pipe	=	make_pipeline(StandardScaler(),	AdaBoostClassifier(random_state=1))

#	Parameter	grid	to	pass	in	GridSearchCV
param_grid	=	{
				"adaboostclassifier__n_estimators":	np.arange(10,	110,	10),
				"adaboostclassifier__learning_rate":	[0.1,	0.01,	0.2,	0.05,	1],
				"adaboostclassifier__base_estimator":	[
								DecisionTreeClassifier(max_depth=1,	random_state=1),
								DecisionTreeClassifier(max_depth=2,	random_state=1),
								DecisionTreeClassifier(max_depth=3,	random_state=1),
				],
}

#	Type	of	scoring	used	to	compare	parameter	combinations
scorer	=	metrics.make_scorer(metrics.recall_score)

#	Calling	GridSearchCV
grid_cv	=	GridSearchCV(estimator=pipe,	param_grid=param_grid,	scoring=scorer,	cv=5,	n_jobs	=	-1)

#	Fitting	parameters	in	GridSeachCV
grid_cv.fit(X_train,	y_train)

print(
				"Best	Parameters:{}	\nScore:	{}".format(grid_cv.best_params_,	grid_cv.best_score_)
)

#	Creating	new	pipeline	with	best	parameters
abc_tuned1	=	make_pipeline(
				StandardScaler(),
				AdaBoostClassifier(
								base_estimator=DecisionTreeClassifier(max_depth=2,	random_state=1),
								n_estimators=100,
								learning_rate=1,
								random_state=1,
				),
)

#	Fit	the	model	on	training	data
abc_tuned1.fit(X_train,	y_train)

#	Calculating	different	metrics
get_metrics_score(abc_tuned1)

#	Creating	confusion	matrix
make_confusion_matrix(abc_tuned1,	y_test)



The	test	recall	has	increased	by	~7%	as	compared	to	cross-validated	recall
The	tuned	Adaboost	model	is	slightly	overfitting	the	training	data
The	test	recall	is	still	less	than	50%	i.e.	the	model	is	not	good	at	identifying	potential	customers	who	would	take	the	offer.

RandomizedSearchCV

Best	parameters	are	{'adaboostclassifier__n_estimators':	100,	'adaboostclassifier__learning_rate':	1,	'adaboostcl
assifier__base_estimator':	DecisionTreeClassifier(max_depth=2,	random_state=1)}	with	CV	score=0.4830712303422756:
CPU	times:	user	59	s,	sys:	459	ms,	total:	59.5	s
Wall	time:	1min

%%time

#	Creating	pipeline
pipe	=	make_pipeline(StandardScaler(),	AdaBoostClassifier(random_state=1))

#	Parameter	grid	to	pass	in	RandomizedSearchCV
param_grid	=	{
				"adaboostclassifier__n_estimators":	np.arange(10,	110,	10),
				"adaboostclassifier__learning_rate":	[0.1,	0.01,	0.2,	0.05,	1],
				"adaboostclassifier__base_estimator":	[
								DecisionTreeClassifier(max_depth=1,	random_state=1),
								DecisionTreeClassifier(max_depth=2,	random_state=1),
								DecisionTreeClassifier(max_depth=3,	random_state=1),
				],
}
#	Type	of	scoring	used	to	compare	parameter	combinations
scorer	=	metrics.make_scorer(metrics.recall_score)

#Calling	RandomizedSearchCV
abc_tuned2	=	RandomizedSearchCV(estimator=pipe,	param_distributions=param_grid,	n_iter=50,	scoring=scorer,	cv=5,	

#Fitting	parameters	in	RandomizedSearchCV
abc_tuned2.fit(X_train,y_train)

print("Best	parameters	are	{}	with	CV	score={}:"	.format(abc_tuned2.best_params_,abc_tuned2.best_score_))

%%time

#	Creating	pipeline
pipe	=	make_pipeline(StandardScaler(),	AdaBoostClassifier(random_state=1))

#	Parameter	grid	to	pass	in	RandomizedSearchCV
param_grid	=	{
				"adaboostclassifier__n_estimators":	np.arange(10,	110,	10),
				"adaboostclassifier__learning_rate":	[0.1,	0.01,	0.2,	0.05,	1],
				"adaboostclassifier__base_estimator":	[
								DecisionTreeClassifier(max_depth=1,	random_state=1),
								DecisionTreeClassifier(max_depth=2,	random_state=1),
								DecisionTreeClassifier(max_depth=3,	random_state=1),
				],
}
#	Type	of	scoring	used	to	compare	parameter	combinations
scorer	=	metrics.make_scorer(metrics.recall_score)

#Calling	RandomizedSearchCV
abc_tuned2	=	RandomizedSearchCV(estimator=pipe,	param_distributions=param_grid,	n_iter=50,	scoring=scorer,	cv=5,	

#Fitting	parameters	in	RandomizedSearchCV
abc_tuned2.fit(X_train,y_train)

print("Best	parameters	are	{}	with	CV	score={}:"	.format(abc_tuned2.best_params_,abc_tuned2.best_score_))



Best	parameters	are	{'adaboostclassifier__n_estimators':	100,	'adaboostclassifier__learning_rate':	1,	'adaboostcl
assifier__base_estimator':	DecisionTreeClassifier(max_depth=2,	random_state=1)}	with	CV	score=0.4830712303422756:
CPU	times:	user	2.17	s,	sys:	174	ms,	total:	2.34	s
Wall	time:	18.9	s

Pipeline(steps=[('standardscaler',	StandardScaler()),
																('adaboostclassifier',
																	AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=2,
																																																																										random_state=1),
																																				learning_rate=1,	n_estimators=100,
																																				random_state=1))])

Accuracy	on	training	set	:		0.9929802169751116
Accuracy	on	test	set	:		0.8586309523809523
Recall	on	training	set	:		0.9786324786324786
Recall	on	test	set	:		0.44
Precision	on	training	set	:		0.9744680851063829
Precision	on	test	set	:		0.5301204819277109

Grid	search	took	a	significantly	longer	time	than	random	search.	This	difference	would	further	increase	as	the	number	of	parameters
increases	but	the	parameters	from	random	search	are	the	same	as	compared	grid	search.
This	can	happen	by	chance	but	it	is	not	guaranteed	to	happen	for	each	algorithm.

XGBoost

GridSearchCV

#	Creating	new	pipeline	with	best	parameters
abc_tuned2	=	make_pipeline(
				StandardScaler(),
				AdaBoostClassifier(
								base_estimator=DecisionTreeClassifier(max_depth=2,	random_state=1),
								n_estimators=100,
								learning_rate=1,
								random_state=1,
				),
)

#	Fit	the	model	on	training	data
abc_tuned2.fit(X_train,	y_train)

#	Calculating	different	metrics
get_metrics_score(abc_tuned2)

#	Creating	confusion	matrix
make_confusion_matrix(abc_tuned2,	y_test)



GridSearchCV

Best	parameters	are	{'xgbclassifier__gamma':	3,	'xgbclassifier__learning_rate':	0.01,	'xgbclassifier__n_estimator
s':	150,	'xgbclassifier__scale_pos_weight':	10,	'xgbclassifier__subsample':	0.8}	with	CV	score=0.8765032377428307
:
CPU	times:	user	59.6	s,	sys:	5.28	s,	total:	1min	4s
Wall	time:	11min	47s

Best	parameters	are	{'xgbclassifier__gamma':	3,	'xgbclassifier__learning_rate':	0.01,	'xgbclassifier__n_estimator
s':	150,	'xgbclassifier__scale_pos_weight':	10,	'xgbclassifier__subsample':	0.8}	with	CV	score=0.8765032377428307
:
CPU	times:	user	57.8	s,	sys:	5.06	s,	total:	1min	2s
Wall	time:	10min	2s

Pipeline(steps=[('standardscaler',	StandardScaler()),
																('xgbclassifier',
																	XGBClassifier(eval_metric='logloss',	gamma=3,
																															learning_rate=0.01,	n_estimators=150,
																															random_state=1,	scale_pos_weight=10,

%%time	

#Creating	pipeline
pipe=make_pipeline(StandardScaler(),	XGBClassifier(random_state=1,eval_metric='logloss'))

#Parameter	grid	to	pass	in	GridSearchCV
param_grid={'xgbclassifier__n_estimators':np.arange(50,300,50),'xgbclassifier__scale_pos_weight':[0,1,2,5,10],
												'xgbclassifier__learning_rate':[0.01,0.1,0.2,0.05],	'xgbclassifier__gamma':[0,1,3,5],
												'xgbclassifier__subsample':[0.7,0.8,0.9,1]}

#	Type	of	scoring	used	to	compare	parameter	combinations
scorer	=	metrics.make_scorer(metrics.recall_score)

#Calling	GridSearchCV
grid_cv	=	GridSearchCV(estimator=pipe,	param_grid=param_grid,	scoring=scorer,	cv=5,	n_jobs	=	-1)

#Fitting	parameters	in	GridSeachCV
grid_cv.fit(X_train,y_train)

print("Best	parameters	are	{}	with	CV	score={}:"	.format(grid_cv.best_params_,grid_cv.best_score_))

%%time	

#Creating	pipeline
pipe=make_pipeline(StandardScaler(),	XGBClassifier(random_state=1,eval_metric='logloss'))

#Parameter	grid	to	pass	in	GridSearchCV
param_grid={'xgbclassifier__n_estimators':np.arange(50,300,50),'xgbclassifier__scale_pos_weight':[0,1,2,5,10],
												'xgbclassifier__learning_rate':[0.01,0.1,0.2,0.05],	'xgbclassifier__gamma':[0,1,3,5],
												'xgbclassifier__subsample':[0.7,0.8,0.9,1]}

#	Type	of	scoring	used	to	compare	parameter	combinations
scorer	=	metrics.make_scorer(metrics.recall_score)

#Calling	GridSearchCV
grid_cv	=	GridSearchCV(estimator=pipe,	param_grid=param_grid,	scoring=scorer,	cv=5,	n_jobs	=	-1)

#Fitting	parameters	in	GridSeachCV
grid_cv.fit(X_train,y_train)

print("Best	parameters	are	{}	with	CV	score={}:"	.format(grid_cv.best_params_,grid_cv.best_score_))

#	Creating	new	pipeline	with	best	parameters
xgb_tuned1	=	make_pipeline(
				StandardScaler(),
				XGBClassifier(
								random_state=1,
								n_estimators=150,
								scale_pos_weight=10,
								subsample=0.8,
								learning_rate=0.01,
								gamma=3,
								eval_metric='logloss',
				),
)

#	Fit	the	model	on	training	data
xgb_tuned1.fit(X_train,	y_train)



																															subsample=0.8))])

Accuracy	on	training	set	:		0.6617740906190173
Accuracy	on	test	set	:		0.6413690476190477
Recall	on	training	set	:		0.9658119658119658
Recall	on	test	set	:		0.8
Precision	on	training	set	:		0.30213903743315507
Precision	on	test	set	:		0.26578073089701

The	test	recall	has	increased	by	~40%	as	compared	to	the	result	from	cross-validation	with	default	parameters.

RandomizedSearchCV

Best	parameters	are	{'xgbclassifier__subsample':	0.8,	'xgbclassifier__scale_pos_weight':	10,	'xgbclassifier__reg_
lambda':	2,	'xgbclassifier__n_estimators':	50,	'xgbclassifier__max_depth':	2,	'xgbclassifier__learning_rate':	0.0

#	Calculating	different	metrics
get_metrics_score(xgb_tuned1)

#	Creating	confusion	matrix
make_confusion_matrix(xgb_tuned1,	y_test)

%%time	

#Creating	pipeline
pipe=make_pipeline(StandardScaler(),XGBClassifier(random_state=1,eval_metric='logloss',	n_estimators	=	50))

#Parameter	grid	to	pass	in	RandomizedSearchCV
param_grid={'xgbclassifier__n_estimators':np.arange(50,300,50),
												'xgbclassifier__scale_pos_weight':[0,1,2,5,10],
												'xgbclassifier__learning_rate':[0.01,0.1,0.2,0.05],
												'xgbclassifier__gamma':[0,1,3,5],
												'xgbclassifier__subsample':[0.7,0.8,0.9,1],
											'xgbclassifier__max_depth':np.arange(1,10,1),
												'xgbclassifier__reg_lambda':[0,1,2,5,10]}

#	Type	of	scoring	used	to	compare	parameter	combinations
scorer	=	metrics.make_scorer(metrics.recall_score)

#Calling	RandomizedSearchCV
randomized_cv	=	RandomizedSearchCV(estimator=pipe,	param_distributions=param_grid,	n_iter=50,	scoring=scorer,	cv=

#Fitting	parameters	in	RandomizedSearchCV
randomized_cv.fit(X_train,y_train)

print("Best	parameters	are	{}	with	CV	score={}:"	.format(randomized_cv.best_params_,randomized_cv.best_score_))



5,	'xgbclassifier__gamma':	3}	with	CV	score=0.9148011100832563:
CPU	times:	user	1min	32s,	sys:	211	ms,	total:	1min	32s
Wall	time:	1min	33s

Best	parameters	are	{'xgbclassifier__subsample':	0.8,	'xgbclassifier__scale_pos_weight':	10,	'xgbclassifier__reg_
lambda':	2,	'xgbclassifier__n_estimators':	50,	'xgbclassifier__max_depth':	2,	'xgbclassifier__learning_rate':	0.0
5,	'xgbclassifier__gamma':	3}	with	CV	score=0.9148011100832563:
CPU	times:	user	1min	41s,	sys:	735	ms,	total:	1min	42s
Wall	time:	1min	43s

{'xgbclassifier__subsample':	0.8,
	'xgbclassifier__scale_pos_weight':	10,
	'xgbclassifier__reg_lambda':	2,
	'xgbclassifier__n_estimators':	50,
	'xgbclassifier__max_depth':	2,
	'xgbclassifier__learning_rate':	0.05,
	'xgbclassifier__gamma':	3}

Pipeline(steps=[('scaler',	StandardScaler()),
																('XGB',
																	XGBClassifier(eval_metric='logloss',	gamma=3,
																															learning_rate=0.05,	max_depth=2,	n_estimators=50,
																															random_state=1,	reg_lambda=2,
																															scale_pos_weight=10,	subsample=0.9))])

%%time	

#Creating	pipeline
pipe=make_pipeline(StandardScaler(),XGBClassifier(random_state=1,eval_metric='logloss',	n_estimators	=	50))

#Parameter	grid	to	pass	in	RandomizedSearchCV
param_grid={'xgbclassifier__n_estimators':np.arange(50,300,50),
												'xgbclassifier__scale_pos_weight':[0,1,2,5,10],
												'xgbclassifier__learning_rate':[0.01,0.1,0.2,0.05],
												'xgbclassifier__gamma':[0,1,3,5],
												'xgbclassifier__subsample':[0.7,0.8,0.9,1],
											'xgbclassifier__max_depth':np.arange(1,10,1),
												'xgbclassifier__reg_lambda':[0,1,2,5,10]}

#	Type	of	scoring	used	to	compare	parameter	combinations
scorer	=	metrics.make_scorer(metrics.recall_score)

#Calling	RandomizedSearchCV
randomized_cv	=	RandomizedSearchCV(estimator=pipe,	param_distributions=param_grid,	n_iter=50,	scoring=scorer,	cv=

#Fitting	parameters	in	RandomizedSearchCV
randomized_cv.fit(X_train,y_train)

print("Best	parameters	are	{}	with	CV	score={}:"	.format(randomized_cv.best_params_,randomized_cv.best_score_))

randomized_cv.best_params_

#	Creating	new	pipeline	with	best	parameters
xgb_tuned2	=	Pipeline(
				steps=[
								("scaler",	StandardScaler()),
								(
												"XGB",
												XGBClassifier(
																random_state=1,
																n_estimators=randomized_cv.best_params_['xgbclassifier__n_estimators'],
																scale_pos_weight=10,
																gamma=3,
																subsample=0.9,
																learning_rate=	0.05,
																eval_metric='logloss',	max_depth	=	2,	reg_lambda	=	2
												),
								),
				]
)
#	Fit	the	model	on	training	data
xgb_tuned2.fit(X_train,	y_train)



Accuracy	on	training	set	:		0.5851946394384173
Accuracy	on	test	set	:		0.5967261904761905
Recall	on	training	set	:		0.9529914529914529
Recall	on	test	set	:		0.87
Precision	on	training	set	:		0.25870069605568446
Precision	on	test	set	:		0.25217391304347825

Random	search	is	giving	better	results	than	Grid	search.
The	test	recall	has	increased	as	compared	to	the	test	recall	from	grid	search	but	the	accuracy	and	precision	have	decreased.
The	overfitting	in	the	model	has	also	decreased

Comparing	all	models

#	Calculating	different	metrics
get_metrics_score(xgb_tuned2)

#	Creating	confusion	matrix
make_confusion_matrix(xgb_tuned2,	y_test)

#	defining	list	of	models
models	=	[abc_tuned1,	abc_tuned2,	xgb_tuned1,	xgb_tuned2]

#	defining	empty	lists	to	add	train	and	test	results
acc_train	=	[]
acc_test	=	[]
recall_train	=	[]
recall_test	=	[]
precision_train	=	[]
precision_test	=	[]

#	looping	through	all	the	models	to	get	the	metrics	score	-	Accuracy,	Recall	and	Precision
for	model	in	models:

				j	=	get_metrics_score(model,	False)
				acc_train.append(j[0])
				acc_test.append(j[1])
				recall_train.append(j[2])
				recall_test.append(j[3])
				precision_train.append(j[4])
				precision_test.append(j[5])

comparison_frame	=	pd.DataFrame(
				{
								"Model":	[
												"Adaboost	with	GridSearchCV",
												"Adaboost	with	RandomizedSearchCV",
												"XGBoost	with	GridSearchCV",
												"XGBoost	with	RandomizedSearchCV",
				



Model Train_Accuracy Test_Accuracy Train_Recall Test_Recall Train_Precision Test_Precision

3 XGBoost	with	RandomizedSearchCV 0.585195 0.596726 0.952991 0.87 0.258701 0.252174

2 XGBoost	with	GridSearchCV 0.661774 0.641369 0.965812 0.80 0.302139 0.265781

0 Adaboost	with	GridSearchCV 0.992980 0.858631 0.978632 0.44 0.974468 0.530120

1 Adaboost	with	RandomizedSearchCV 0.992980 0.858631 0.978632 0.44 0.974468 0.530120

The	xgboost	model	tuned	using	randomised	search	is	giving	the	best	test	recall	of	0.87	but	it	has	the	least	train	and	test	precision.
Let's	see	the	feature	importance	from	the	tuned	xgboost	model

								],
								"Train_Accuracy":	acc_train,
								"Test_Accuracy":	acc_test,
								"Train_Recall":	recall_train,
								"Test_Recall":	recall_test,
								"Train_Precision":	precision_train,
								"Test_Precision":	precision_test,
				}
)

#	Sorting	models	in	decreasing	order	of	test	recall
comparison_frame.sort_values(by="Test_Recall",	ascending=False)

feature_names	=	X_train.columns
importances	=	xgb_tuned2[1].feature_importances_
indices	=	np.argsort(importances)

plt.figure(figsize=(12,	12))
plt.title("Feature	Importances")
plt.barh(range(len(indices)),	importances[indices],	color="violet",	align="center")
plt.yticks(range(len(indices)),	[feature_names[i]	for	i	in	indices])
plt.xlabel("Relative	Importance")
plt.show()



Amount	spent	on	gold	products	is	the	most	important	feature,	followed	by	NumCatalogPurchases	and	the	Recency	of	the	customer.

Business	Recommendations

Company	should	target	customers	who	buy	premium	products	-	gold	products	or	high-quality	wines	-	as	these	customers	can	spend
more	and	are	more	likely	to	purchase	the	offer.	The	company	should	further	launch	premium	offers	for	such	customers.	Such	offers	can
also	be	extended	to	customers	with	higher	income.
We	observed	in	our	analysis	that	~64%	of	customers	are	married	but	single	customers,	including	divorced	and	widowed,	are	more	likely
to	take	the	offer.	The	company	should	expand	its	customers	by	customizing	offers	to	attract	more	single	customers.
Customers	who	are	frequent	buyers,	should	be	targeted	more	by	the	company	and	offer	them	added	benefits.
Total	amount	spent	has	decreased	over	the	years	which	shows	that	either	our	product	qualities	have	declined	or	the	company	lacks
marketing	strategies.	The	company	should	constantly	improve	its	marketing	strategies	to	address	such	issues.
Our	analysis	showed	that	~99%	of	customers	had	no	complaints	in	the	last	two	years	which	can	be	due	to	the	lack	of	feedback	options
for	customers.	The	company	should	create	easy	mechanisms	to	gather	feedback	from	the	customers	and	use	it	to	identify	major
concerns	if	any.
The	number	of	web	visits	is	an	important	feature	and	the	company	should	work	on	customizing	its	website	to	allow	more	traffic	on	the
website.	The	company	can	improve	the	interface	and	provide	easy	check-in,	check-out	and	delivery	options.
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