Problem Statement:

'All You Need' Supermarket is planning for the year-end sale. They want to launch a new offer - gold membership for only \$499 which is \\$999 on normal days(that gives a 20% discount on all purchases).

It will be valid only for existing customers, they are planning to start a campaign through phone calls.

The best way to reduce the cost of the campaign is to make a predictive model which will classify customers who might purchase the offer, using the data they gathered during last year's campaign.

We will build a model for classifying whether customers will reply with a positive response or not.

Objective:

- What are the different factors which affect the target variable? What business recommendations can we give based on the analysis?
- How can we improve model performance using hyperparameter tuning and prevent data leakage using pipelines while building a model to predict the response of a customer?

Data Dictionary

- Response (target) 1 if customer accepted the offer in the last campaign, 0 otherwise
- . ID Unique ID of each customer
- · Year Birth Age of the customer
- Complain 1 if the customer complained in the last 2 years
- Dt Customer date of customer's enrollment with the company
- · Education customer's level of education
- · Marital customer's marital status
- Kidhome number of small children in customer's household
- Teenhome number of teenagers in customer's household
- · Income customer's yearly household income
- MntFishProducts the amount spent on fish products in the last 2 years
- MntMeatProducts the amount spent on meat products in the last 2 years
- MntFruits the amount spent on fruits products in the last 2 years
- MntSweetProducts amount spent on sweet products in the last 2 years
- MntWines the amount spent on wine products in the last 2 years
- MntGoldProds the amount spent on gold products in the last 2 years
- NumDealsPurchases number of purchases made with discount
- NumCatalogPurchases number of purchases made using catalog (buying goods to be shipped through the mail)
- NumStorePurchases number of purchases made directly in stores
- NumWebPurchases number of purchases made through the company's website
- NumWebVisitsMonth number of visits to company's website in the last month
- Recency number of days since the last purchase

Import necessary libraries

```
In [177...
          import warnings
          warnings.filterwarnings("ignore")
          # Libraries to help with reading and manipulating data
          import pandas as pd
          import numpy as np
          # libaries to help with data visualization
          %matplotlib inline
          import matplotlib.pyplot as plt
          import seaborn as sns
          # Libraries to tune model, get different metric scores, and split data
          from sklearn import metrics
          from sklearn.model_selection import train_test_split, StratifiedKFold, cross_val_score
          from sklearn.preprocessing import StandardScaler
          from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
          from sklearn.impute import KNNImputer
          from sklearn.pipeline import Pipeline, make pipeline
          #libraries to help with model building
```

```
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import (
   AdaBoostClassifier,
   GradientBoostingClassifier,
   RandomForestClassifier)
from xgboost import XGBClassifier
```

Load and view the dataset

```
In [178...
           data = pd.read excel("marketing data.xlsx")
In [82]:
           data.head()
                ID Year_Birth Education Marital_Status Income Kidhome Teenhome Dt_Customer Recency
                                                                                                      MntWines ... MntFishProducts MntSwe
Out[82]:
              1826
                        1970
                              Graduation
                                             Divorced 84835.0
                                                                    0
                                                                              0
                                                                                      6/16/14
                                                                                                    0
                                                                                                            189
                                                                                                                              111
                                                                    0
                                                                              0
                                                                                      6/15/14
                                                                                                    0
                        1961
                              Graduation
                                               Single 57091.0
                                                                                                            464
          2
             10476
                        1958
                             Graduation
                                              Married 67267.0
                                                                    0
                                                                                      5/13/14
                                                                                                   0
                                                                                                                               15
                                                                              1
                                                                                                            134 ...
                                                                                   2014-11-05
              1386
                                             Together 32474.0
                                                                                                   0
                                                                                                            10 ...
                        1967
                             Graduation
                                                                                     00:00:00
                                                                                   2014-08-04
                        1989
                                                                              0
                                                                                                    0
              5371
                             Graduation
                                               Single 21474.0
                                                                                                             6 ...
                                                                                                                               11
                                                                                     00:00:00
         5 rows × 22 columns
In [179...
           data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 2240 entries, 0 to 2239
          Data columns (total 22 columns):
           #
               Column
                                       Non-Null Count
                                                         Dtype
           0
               ID
                                       2240 non-null
                                                         int64
                Year_Birth
                                       2240 non-null
                                                         int64
           2
                                       2240 non-null
                                                         object
                Education
                                       2240 non-null
           3
                Marital_Status
                                                         object
           4
                                                         float64
                                       2216 non-null
                Income
           5
                Kidhome
                                       2240 non-null
                                                         int64
                                       2240 non-null
           6
                Teenhome
                                                         int64
           7
                Dt Customer
                                       2240 non-null
                                                         object
           8
                Recency
                                       2240 non-null
                                                         int64
           9
                MntWines
                                       2240 non-null
                                                         int64
               MntFruits
                                       2240 non-null
           10
                                                         int64
           11
               MntMeatProducts
                                       2240 non-null
                                                         int64
               MntFishProducts
                                       2240 non-null
                                                         int64
           12
           13
               {\tt MntSweetProducts}
                                       2240 non-null
                                                         int64
           14
               MntGoldProds
                                       2240 non-null
                                                         int64
           15
               NumDealsPurchases
                                       2240 non-null
                                                         int64
                                       2240 non-null
           16
               NumWebPurchases
                                                         int64
           17
                NumCatalogPurchases
                                       2240 non-null
                                                         int64
               NumStorePurchases
                                       2240 non-null
           18
                                                         int64
           19
                NumWebVisitsMonth
                                       2240 non-null
                                                         int64
           20
               Response
                                       2240 non-null
                                                         int64
           21
               Complain
                                       2240 non-null
                                                         int64
          dtypes: float64(1), int64(18), object(3)
          memory usage: 385.1+ KB
```

- There are a total of 22 columns and 2,240 observations in the dataset
- We can see that income column have less than 2,240 non-null values i.e. column have missing values. We'll explore this further.

Let's check the number of unique values in each column

```
In [180. data.nunique()

Out[180. ID 2240
Year_Birth 59
Education 5
Marital_Status 8
```

Income	1974
Kidhome	3
Teenhome	3
Dt_Customer	663
Recency	100
MntWines	776
MntFruits	158
MntMeatProducts	558
MntFishProducts	182
MntSweetProducts	177
MntGoldProds	213
NumDealsPurchases	15
NumWebPurchases	15
NumCatalogPurchases	14
NumStorePurchases	14
NumWebVisitsMonth	16
Response	2
Complain	2
dtype: int64	

• We can drop the column - ID as it is unique for each customer and will not add value to the model.

```
In [181...
```

```
# Dropping column - ID
data.drop(columns=["ID"], inplace=True)
```

Summary of the data

In [182...

data.describe().T

Out[182...

	count	mean	std	min	25%	50%	75%	max
Year_Birth	2240.0	1968.805804	11.984069	1893.0	1959.00	1970.0	1977.00	1996.0
Income	2216.0	52247.251354	25173.076661	1730.0	35303.00	51381.5	68522.00	666666.0
Kidhome	2240.0	0.444196	0.538398	0.0	0.00	0.0	1.00	2.0
Teenhome	2240.0	0.506250	0.544538	0.0	0.00	0.0	1.00	2.0
Recency	2240.0	49.109375	28.962453	0.0	24.00	49.0	74.00	99.0
MntWines	2240.0	303.935714	336.597393	0.0	23.75	173.5	504.25	1493.0
MntFruits	2240.0	26.302232	39.773434	0.0	1.00	8.0	33.00	199.0
MntMeatProducts	2240.0	166.950000	225.715373	0.0	16.00	67.0	232.00	1725.0
MntFishProducts	2240.0	37.525446	54.628979	0.0	3.00	12.0	50.00	259.0
MntSweetProducts	2240.0	27.062946	41.280498	0.0	1.00	8.0	33.00	263.0
MntGoldProds	2240.0	44.021875	52.167439	0.0	9.00	24.0	56.00	362.0
NumDealsPurchases	2240.0	2.325000	1.932238	0.0	1.00	2.0	3.00	15.0
NumWebPurchases	2240.0	4.084821	2.778714	0.0	2.00	4.0	6.00	27.0
NumCatalogPurchases	2240.0	2.662054	2.923101	0.0	0.00	2.0	4.00	28.0
NumStorePurchases	2240.0	5.790179	3.250958	0.0	3.00	5.0	8.00	13.0
NumWebVisitsMonth	2240.0	5.316518	2.426645	0.0	3.00	6.0	7.00	20.0
Response	2240.0	0.149107	0.356274	0.0	0.00	0.0	0.00	1.0
Complain	2240.0	0.009375	0.096391	0.0	0.00	0.0	0.00	1.0

- Year_Birth has a large range of values i.e. 1893 to 1996.
- Columns MntFruits, MntWines, MntMeatProducts, MntFishProducts, MntSweetProducts might have outliers on the right end as there is a large difference between 75th percentile and maximum values.
- Recency has an approx equal mean and median which is equal to 49.
- Highest mean amount spent in the last two years is on wines (approx 304), followed by meat products (approx 167).
- The distribution of classes in the Response variable is imbalanced as most of the values are 0.

Data Preprocessing

Adding age of the customers to the data using given birth years

```
# To calculate age we'll subtract the year 2016 because variables account for the last 2 years
          # and we have customers registered till 2014 only
          # We need to convert strings values to dates first to use subtraction
          data["Age"] = 2016 - pd.to_datetime(data["Year_Birth"], format="%Y").apply(
               lambda x: x.year
          data["Age"].sort_values()
Out[183... 562
                   20
          1824
                   20
          697
                   21
          1468
                   21
          964
                   21
                   75
          1740
          2171
                   76
          2233
                   116
          827
                  117
          513
                  123
          Name: Age, Length: 2240, dtype: int64
          • We can see that there are 3 observations with ages greater than 100 i.e. 116, 117 and 123 which is highly unlikely to be true.
```

• We can cap the value for age variables to the next highest value i.e. 76.

```
# Capping age variable
data["Age"].clip(upper=76, inplace=True)
```

Using Dt_Customer to add features to the data

```
In [185...
          # The feature Dt Customer represents dates of the customer's enrollment with the company.
          # Let's convert this to DateTime format
          data["Dt_Customer"] = pd.to_datetime(data["Dt_Customer"])
In [186...
          # Extracting registration year from the date
          data["Reg year"] = data["Dt Customer"].apply(lambda x: x.year)
          # Extracting registration quarter from the date
          data["Reg_quarter"] = data["Dt_Customer"].apply(lambda x: x.quarter)
          # Extracting registration month from the date
          data["Reg_month"] = data["Dt_Customer"].apply(lambda x: x.month)
          # Extracting registration week from the date
          data["Reg_week"] = data["Dt_Customer"].apply(lambda x: x.day // 7)
In [187...
          data.head()
            Year_Birth Education Marital_Status Income
                                                   Kidhome Teenhome
                                                                     Dt_Customer Recency MntWines
                                                                                                  MntFruits ... NumCatalogPurchases
Out[187...
```

```
0
                                  Divorced 84835.0
                                                             0
                                                                               2014-06-16
                                                                                                  0
                                                                                                                       104 ...
                                                                                                                                                     4
         1970 Graduation
                                                                         0
                                                                                                            189
          1961
                Graduation
                                    Single
                                            57091.0
                                                             0
                                                                         0
                                                                               2014-06-15
                                                                                                  0
                                                                                                            464
                                                                                                                         5
                                                                                                                                                     3
 2
          1958
                Graduation
                                   Married
                                            67267.0
                                                             0
                                                                               2014-05-13
                                                                                                  0
                                                                                                            134
                                                                                                                         11 ...
                                                                                                                                                      2
                                                                                                                         0 ...
 3
          1967
                Graduation
                                  Together 32474.0
                                                                         1
                                                                               2014-11-05
                                                                                                  0
                                                                                                             10
                                                                                                                                                     0
 4
          1989 Graduation
                                    Single 21474.0
                                                             1
                                                                         0
                                                                               2014-08-04
                                                                                                  0
                                                                                                              6
                                                                                                                         16 ...
5 rows × 26 columns
```

Let's check the count of each unique category in each of the categorical variables.

```
# Making a list of all categorical variables
cat_col = [
    "Education",
    "Marital_Status",
    "Kidhome",
    "Teenhome",
    "Complain",
    "Response",
    "Reg_year",
    "Reg_quarter",
    "Reg_month",
```

```
]
# Printing number of count of each unique value in each column
for column in cat col:
    print(data[column].value_counts())
    print("-" * 40)
Graduation 1127
PhD
          370
Master
2n Cycle 203
Basic 54
Name: Education, dtype: int64
-----
Married 864
Together 580
Single
          480
Divorced 232
         77
Widow
Alone
Y0L0
Absurd
Name: Marital_Status, dtype: int64
0 1293
   899
1
2
     48
Name: Kidhome, dtype: int64
  1158
  1030
1
     52
Name: Teenhome, dtype: int64
0
  2219
1
    21
Name: Complain, dtype: int64
0 1906
     334
Name: Response, dtype: int64
2013 1189
2014 557
2012 494
Name: Reg_year, dtype: int64
  596
    580
1
2
    546
3
   518
Name: Reg_quarter, dtype: int64
8 211
10 209
3
     202
12 202
5
   192
    191
1
2
     187
11 185
4
    184
6
     170
9
     166
    141
Name: Reg_month, dtype: int64
1
  523
2
    500
3
    490
0
    462
    265
Name: Reg_week, dtype: int64
```

"Reg_week",

- In education, 2n cycle and Master means the same thing. We can combine these two categories.
- There are many categories in marital status. We can combine the categories 'Alone', 'Absurd' and 'YOLO' with 'Single' and 'Together' categories with 'Married'.
- There are only 21 customers who complained in the last two years.

- We have 1906 observations for the 0 class but only 334 observations for class 1.
- There are only three years in the customer registration data.

Imputing missing values in income column

```
In [192...
           # number of missing values in each column
           data.isnull().sum()
Out[192... Year_Birth
                                    0
          Education
                                    0
                                    0
          {\tt Marital\_Status}
          Income
                                   24
                                    0
          Kidhome
          Teenhome
                                    0
                                    0
          Dt Customer
          Recency
                                    0
          MntWines
                                    0
          MntFruits
                                    0
          MntMeatProducts
                                    0
          MntFishProducts
                                    0
          MntSweetProducts
                                    0
          MntGoldProds
                                    0
          NumDealsPurchases
                                    0
          NumWebPurchases
                                    0
          NumCatalogPurchases
                                    0
          {\tt NumStorePurchases}
                                    0
          {\tt NumWebVisitsMonth}
                                    0
          Response
                                    0
          Complain
                                    0
          Age
                                    0
                                    0
          Reg year
          Reg\_quarter
                                    0
          Reg month
                                    0
          Reg_week
                                    0
          dtype: int64
```

```
# Percentage of missing values in income column
round(data.isna().sum() / data.isna().count() * 100, 2)["Income"]
Out[193... 1.07
```

We can add a column - total amount spent by each customer in the last 2 years

EDA

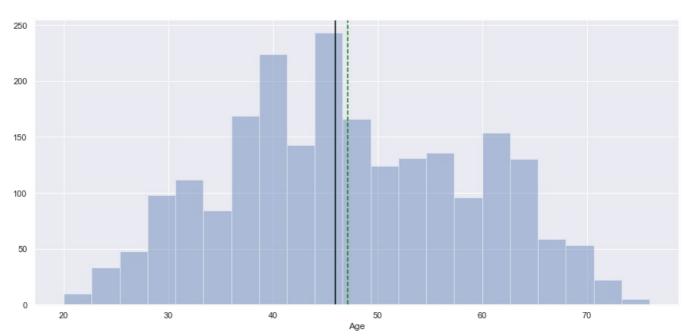
Univariate

```
In [195... # While doing uni-variate analysis of numerical variables we want to study their central tendency # and dispersion.
```

```
# Let us write a function that will help us create a boxplot and histogram for any input numerical
# variable.
# This function takes the numerical column as the input and returns the boxplots
# and histograms for the variable.
# Let us see if this helps us write faster and cleaner code.
def histogram_boxplot(feature, figsize=(15, 10), bins=None):
    """Boxplot and histogram combined
    feature: 1-d feature array
    figsize: size of fig (default (9,8))
    bins: number of bins (default None / auto)
    f2, (ax_box2, ax_hist2) = plt.subplots(
    nrows=2, # Number of rows of the subplot grid= 2
        sharex=True, # x-axis will be shared among all subplots
        gridspec_kw={"height_ratios": (0.25, 0.75)},
        figsize=figsize,
       # creating the 2 subplots
    sns.boxplot(
        feature, ax=ax_box2, showmeans=True, color="violet"
       # boxplot will \overline{b}e created and a star will indicate the mean value of the column
    sns.distplot(
        feature, kde=F, ax=ax_hist2, bins=bins, palette="winter"
    ) if bins else sns.distplot(
        feature, kde=False, ax=ax hist2
       # For histogram
    ax_hist2.axvline(
        np.mean(feature), color="green", linestyle="--"
       # Add mean to the histogram
    ax_hist2.axvline(
        np.median(feature), color="black", linestyle="-"
       # Add median to the histogram
```

In [196...

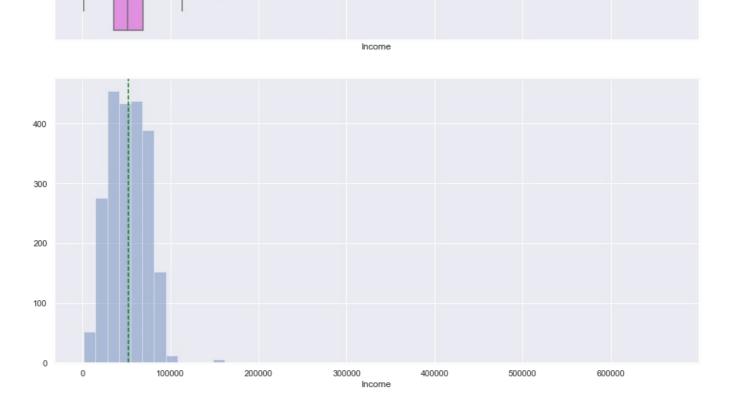
```
# Observations on Customer_age
histogram_boxplot(data["Age"])
```

- · As per the boxplot, there are no outliers in the 'Age' variable
- Age has a fairly normal distribution with approx equal mean and median

```
In [197...
```

```
# observations on Income
histogram_boxplot(data["Income"])
```

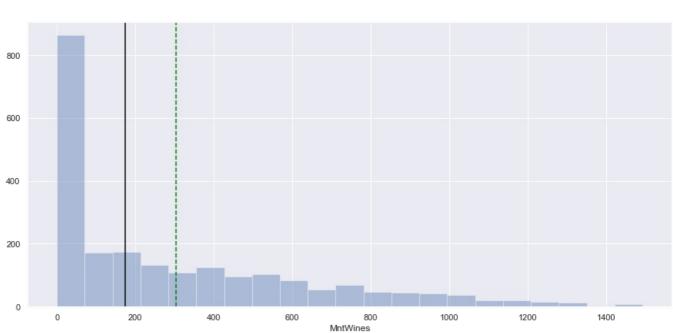


- We can see there are some outliers in the income variable.
- Some variation is always expected in real-world scenarios for the income variable but we can remove the data point on the extreme right end of the boxplot as it can be a data entry error.

- There are no outliers in the 'Recency' variable
- The distribution is fairly symmetric and uniformly distributed.

In [200...

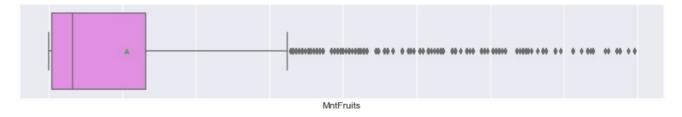
observations on MntWines
histogram_boxplot(data["MntWines"])

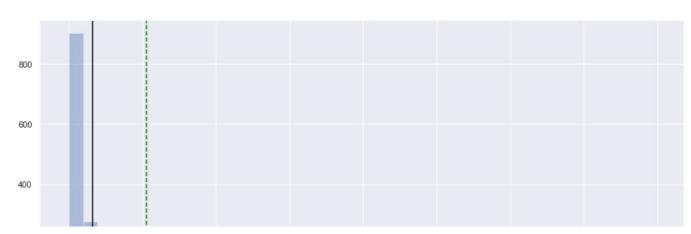


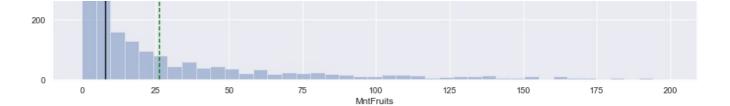
- The distribution for the amount spent on wines is highly skewed to the right
- As the median of the distribution is less than 200, more than 50% of customers have spent less than 200 on wines.
- There are some outliers on the right end of the boxplot but we will not treat them as some variation is always expected in real-world scenarios for variables like amount spent.

In [201...

observations on MntFruits
histogram_boxplot(data["MntFruits"])



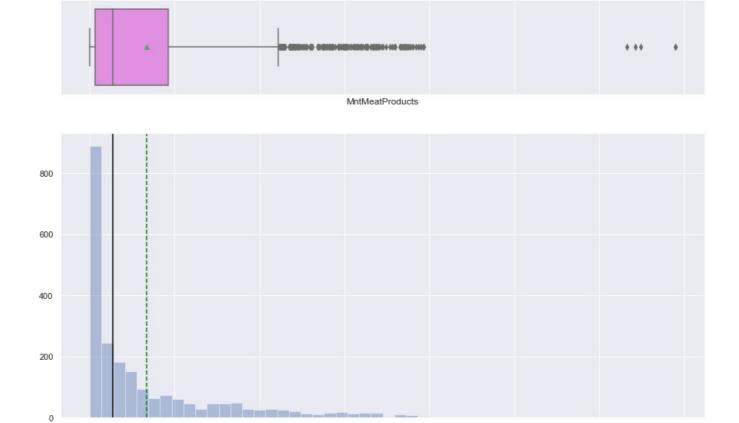




- The distribution for the amount spent on fruits is highly skewed to the right.
- As the median of the distribution is less than 20, more than 50% of customers have spent less than 20 on fruits.
- There are some outliers on the right end of the boxplot but we will not treat them as some variation is always expected in real-world scenarios for variables like amount spent.

In [202...

observations on MntMeatProducts
histogram_boxplot(data["MntMeatProducts"])



• The distribution for the amount spent on meat products is highly skewed to the right.

• We can see that there are some extreme observations in the variable that can be considered as outliers as they very far from the rest of the values.

MntMeatProducts

• We can cap the value of the variable to the next highest value.

In [106...

Checking 5 largest values of amount spend on meat products
data.MntMeatProducts.nlargest(10)

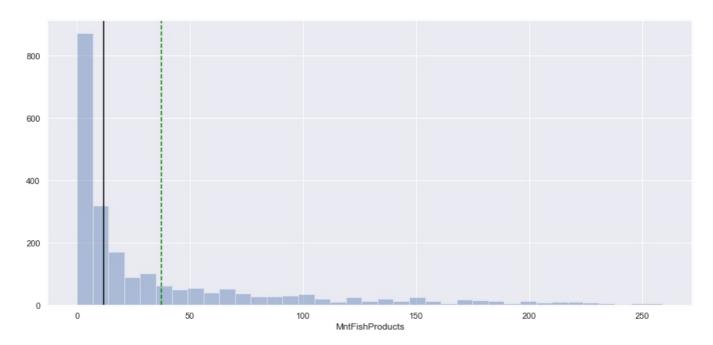
```
Out[106...
```

```
325
         1725
961
         1725
497
         1622
1213
         1607
2204
         1582
1921
          984
53
          981
994
          974
2021
          968
1338
          961
```

Name: MntMeatProducts, dtype: int64

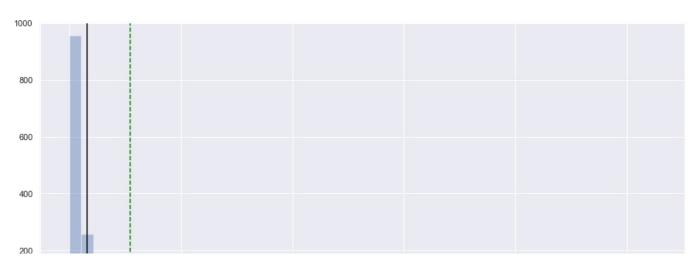
In [204...

observations on MntFishProducts histogram_boxplot(data["MntFishProducts"])



- The distribution for the amount spent on fish products is right-skewed
- There are some outliers on the right end in the boxplot but we will not treat them as this represents a real market trend that some customers spend more on fish products than others.

observations on MntSweetProducts histogram_boxplot(data["MntSweetProducts"])



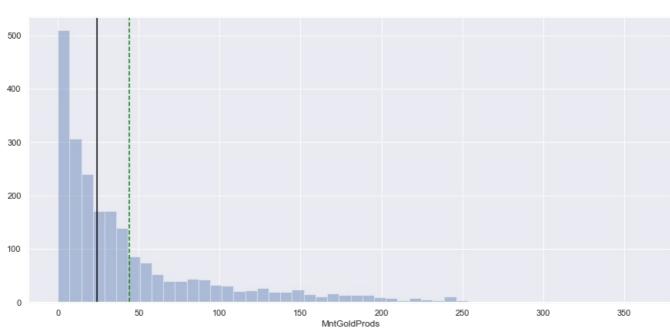
- The distribution for the amount spent on sweet products is right-skewed
- There is one observation to the right extreme which can be considered as an outlier.
- We will not remove all such data points as they represent real market trends but we can cap some of the extreme values.

In [206...

Capping values for amount spent on sweet products at 198
data["MntSweetProducts"].clip(upper=198, inplace=True)

In [111...

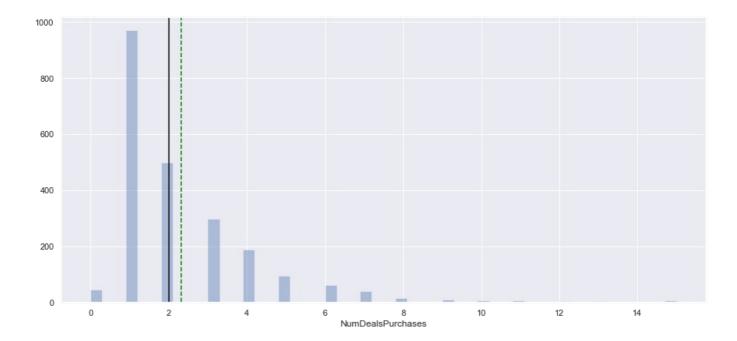
observations on MntGoldProds
histogram_boxplot(data["MntGoldProds"])



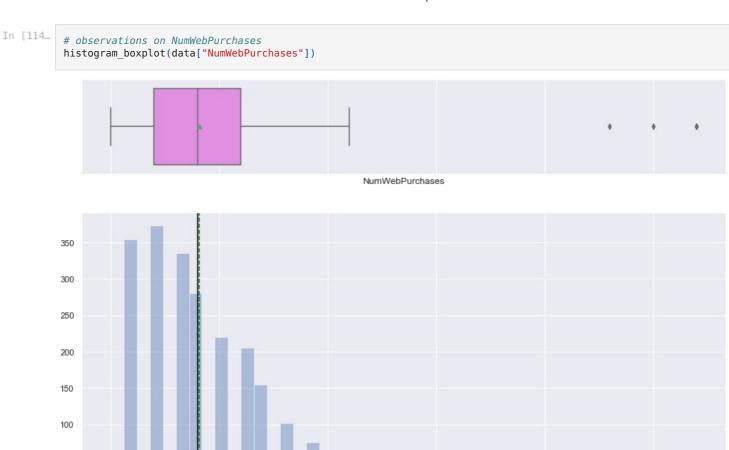
- The distribution for the amount spent on gold products is right-skewed
- There are some outliers in the amount spent on gold products. We will not remove all such data points as they represent real market trends but we can cap some of the extreme values.

```
# Capping values for amount spent on gold products at 250
data["MntGoldProds"].clip(upper=250, inplace=True)

In [113... # observations on NumDealsPurchases
histogram_boxplot(data["NumDealsPurchases"])
```



- Majority of the customers have 2 or less than 2 deal purchases.
- We can see that there some extreme observations in the variable. This represents the real market trend.



• The median of the distribution is 4 i.e. 50% of customers have 4 or less than 4 web purchases.

5

• We can see that there are some extreme observations in the variable. We can cap these values to the next highest number of purchases.

NumWebPurchases

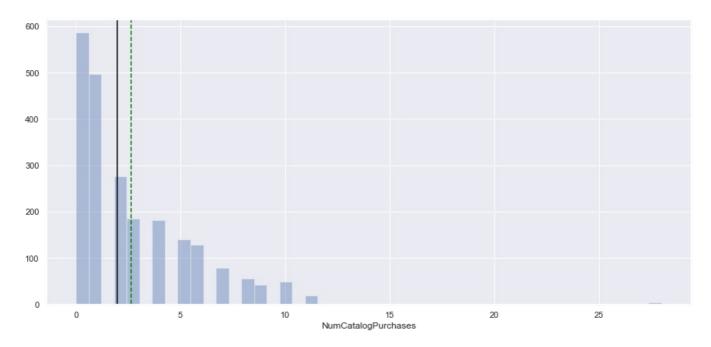
20

25

```
# Capping values for number of web purchases at 11
data["NumWebPurchases"].clip(upper=11, inplace=True)
```

50

0



- The most number of observations are for 0 catalog purchases.
- The median of the distribution is 2 i.e. 50% of customers have 2 or less than 2 catalog purchases.
- We can see that there is two extreme observation in the variable. We can cap these values to the next highest number of purchases.

In [209... # Capping values for number of catalog purchases at 11
 data["NumCatalogPurchases"].clip(upper=11, inplace=True)

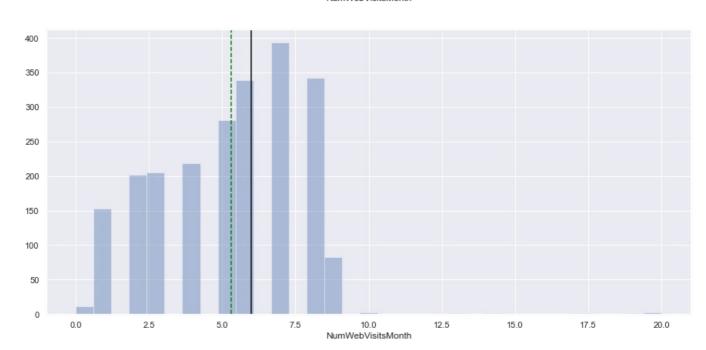
In [118... # observations on NumStorePurchases
 histogram_boxplot(data["NumStorePurchases"])

- 0 NumStorePurchases
- There are very few observations with less than 2 purchases from the store
- Most of the customers have 4 or 5 purchases from the store
- There are no outliers in this variable

In [119...

```
# observations on NumWebVisitsMonth
histogram boxplot(data["NumWebVisitsMonth"])
```

NumWebVisitsMonth

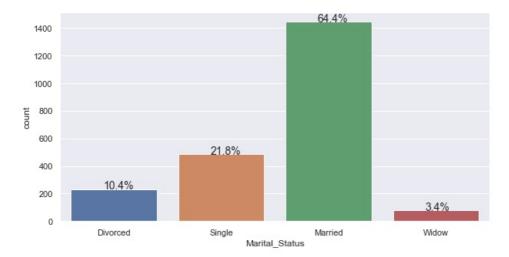


- The distribution for the number of visits in a month is skewed and has some outliers at the right end.
- · We will not treat this as this represents a general market trend

```
In [120...
          def perc_on_bar(feature):
              plot
              feature: categorical feature
              the function won't work if a column is passed in the hue parameter
              # Creating a countplot for the feature
              sns.set(rc={"figure.figsize": (10, 5)})
              ax = sns.countplot(x=feature, data=data)
              total = len(feature) # length of the column
              for p in ax.patches:
                  percentage = "{:.1f}%".format(
                     100 * p.get height() / total
                  ) # percentage of each class of the category
                  x = p.get_x() + p.get_width() / 2 - 0.1 # width of the plot
                  y = p.get_y() + p.get_height() # hieght of the plot
                  ax.annotate(percentage, (x, y), size=14) # annotate the percantage
              plt.show() # show the plot
```

```
In [121...
```

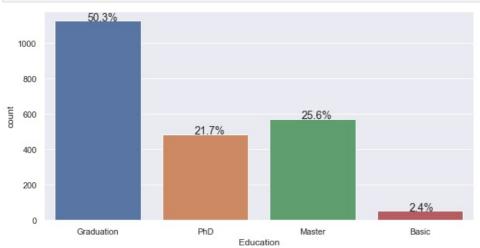
```
# observations on Marital_Status
perc on bar(data["Marital Status"])
```



• Majority of the customers are married comprising approx 64% of total customers.

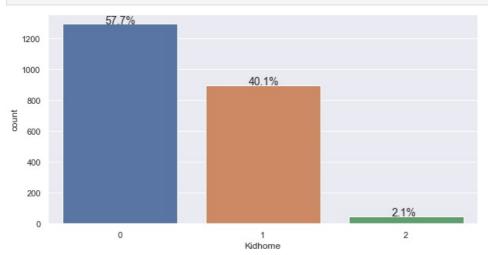
, ,

In [122... # observations on Education
 perc_on_bar(data["Education"])

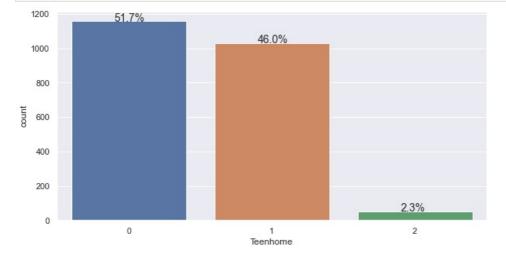


- Education of approx 50% of customers is at graduation level.
- Very few observations i.e. ~2% for customers with basic level education

observations on Kidhome
perc_on_bar(data["Kidhome"])

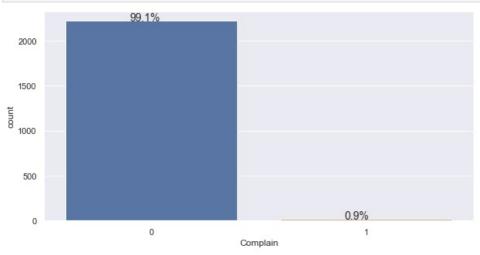


- $\bullet~$ ~40% of customers have 1 kid and ~58% of customers have no kids at home
- There are very few customers, approx 2%, with a number of kids greater than 1



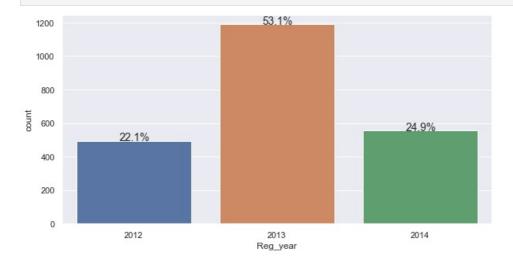
- Majority of the customers i.e. ~52% customers have no teen at home
- There are very few customers, only ~2%, with a number of teens greater than 1

In [125... # observations on Complain
 perc_on_bar(data["Complain"])



• Approx 99% of customers had no complaint in the last 2 years. This might be because the company provides good services or might be due to the lack of feedback options for customers.

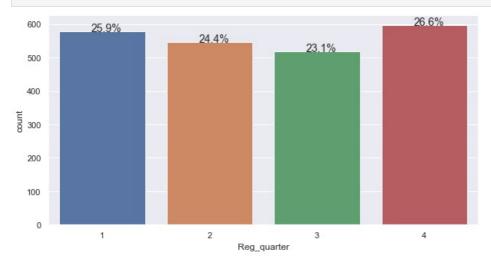
In [126... # observations on Registration year
 perc_on_bar(data["Reg_year"])



• The number of customers registered is highest in the year 2013.

In [127...

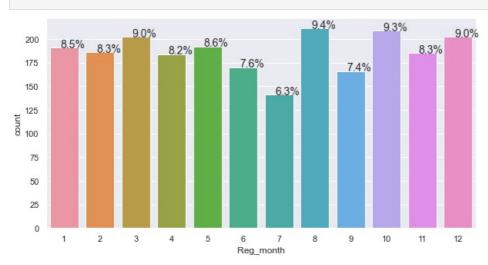
observations on Registration quarter
perc_on_bar(data["Reg_quarter"])



- There is no significant difference in the number of registrations for each quarter.
- The number of registrations is slightly higher for the 1st and the 4th quarter. This can be due to the festival season in these months.
- Let's explore this further by plotting the count of registration per month.

In [128...

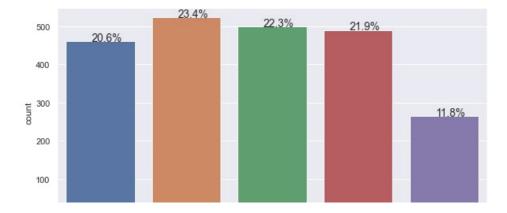
observations on Registration month
perc_on_bar(data["Reg_month"])



- This shows that the highest number of registration is in the months of winters i.e. March, August, October & December
- There is approx 3% reduction in the number of registrations from June to July.

In [129...

observations on Registration week
perc_on_bar(data["Reg_week"])



0 1 2 3 4 Reg_week

• This shows that the number of registrations declines at the end of the month i.e. in the last two weeks.

Response

• This can be because most people get salaries on the last day or first day of the month.

In [130...

observations on Response
perc_on_bar(data["Response"])

2000
1750
1500
1250
750
500
250
0

- Approx 85% customer's response was NO in the last campaign.
- This shows that the distribution of classes in the target variable is imbalanced. We have only ~15% observations where the response is YES.

Bivariate Analysis

In [131... sns.pairplot(data, hue="Response")

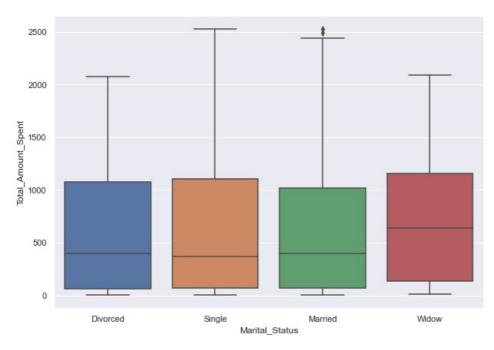
Out[131_ <seaborn.axisgrid.PairGrid at 0x167f26990>



- There are overlaps i.e. no clear distinction in the distribution of variables for people who have taken the product and did not take the product.
- Let's explore this further with the help of other plots.

```
sns.set(rc={"figure.figsize": (10, 7)})
sns.boxplot(y="Total_Amount_Spent", x="Marital_Status", data=data, orient="vertical")
```

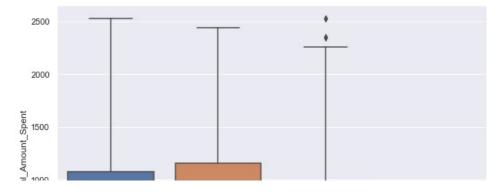
Out[132... <AxesSubplot:xlabel='Marital_Status', ylabel='Total_Amount_Spent'>



- We can see that the total amount spent is higher for widowed customers.
- No significant difference in the amount spent by single, married or divorced customers.

```
In [133... sns.boxplot(y="Total_Amount_Spent", x="Education", data=data, orient="vertical")
```

Out[133... <AxesSubplot:xlabel='Education', ylabel='Total_Amount_Spent'>

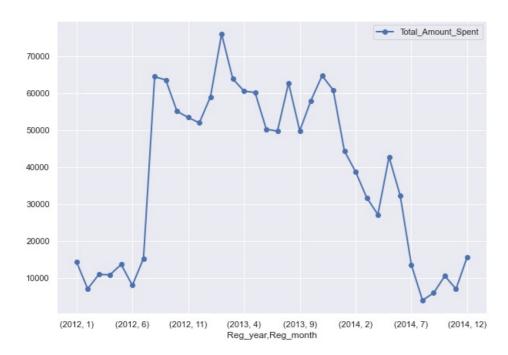


```
Soo Graduation PhD Master Basic
```

- As expected, the amount spent increases with the increase in education level.
- Customers with graduate-level education spend slightly more than customers with master-level education.

```
In [134...
    pd.pivot_table(
        data=data,
        index=["Reg_year", "Reg_month"],
        values="Total_Amount_Spent",
        aggfunc=np.sum,
    ).plot(kind="line", marker="o", linewidth=2)
```

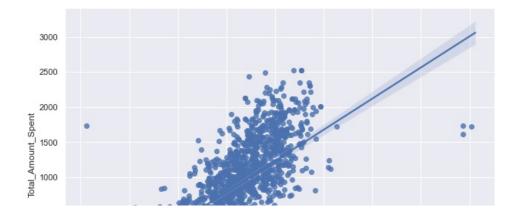
Out[134... <AxesSubplot:xlabel='Reg_year,Reg_month'>



- The plot clearly shows that the total amount spent has declined over the years.
- The plot shows the highest increase in the amount spent from August to September 2012.

```
In [135...
sns.regplot(y=data.Total_Amount_Spent, x=data.Income)
```

Out[135... <AxesSubplot:xlabel='Income', ylabel='Total_Amount_Spent'>



- We can see that income and the total amount spent have a positive correlation.
- The total amount spent is not much different for customers with income in the range of 20K to 60K but the difference is significant for customers in the range of 60K to 100K.

```
In [136...
              cols = data[
                         "MntWines",
                        "MntGoldProds",
                         "MntMeatProducts",
                         "MntFruits",
                        "MntFishProducts",
                         "MntSweetProducts",
             ].columns.tolist()
             plt.figure(figsize=(10, 10))
             for i, variable in enumerate(cols):
                   plt.subplot(3, 2, i + 1)
sns.boxplot(data["Response"], data[variable])
                   plt.tight_layout()
                   plt.title(variable)
             plt.show()
                                          MntWines
                                                                                                     MntGoldProds
               1500
                                                                             250
               1250
                                                                             200
               1000
                                                                           MntGoldProds
             MntWines
                                                                             150
                750
                                                                              100
                500
                                                                               50
                250
                  0
                                                                                0
                                                                                               0
                                 0
                                          Response
                                                                                                       Response
                                       MntMeatProducts
                                                                                                        MntFruits
               1000
                                                                             200
                800
                                                                             150
             MntMeatProducts
                600
                                                                           MntFruits
                                                                              100
                400
                                                                               50
                200
                                                                                0
                  0
                                 0
                                                                                               0
                                          Response
                                                                                                       Response
                                       MntFishProducts
                                                                                                   MntSweetProducts
                                                                             200
                250
                200
                                                                             150
                                                                           MntSweetProducts
             MntFishProducts
                150
                                                                             100
                100
                                                                              50
                 50
                  0
```

• Each plot shows that customer spending more on any product is more likely to take the offer.

0

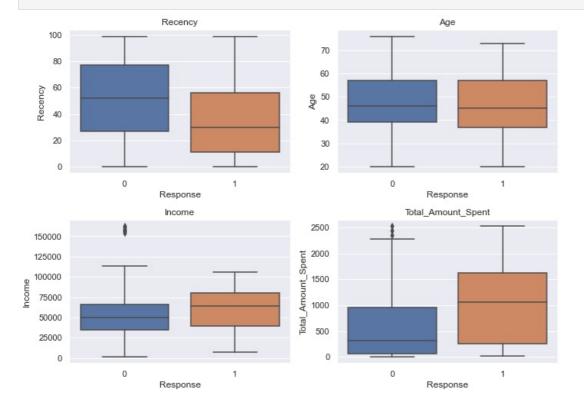
Response

0

Response

```
In [137...
cols = data[["Recency", "Age", "Income", "Total_Amount_Spent"]].columns.tolist()
plt.figure(figsize=(10, 10))

for i, variable in enumerate(cols):
    plt.subplot(3, 2, i + 1)
    sns.boxplot(data["Response"], data[variable])
    plt.tight_layout()
    plt.title(variable)
plt.show()
```



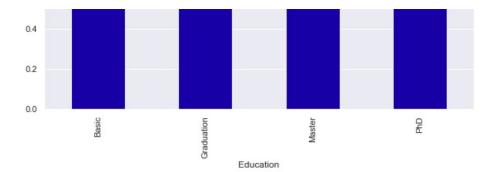
- Customers with lower recency i.e. less number of days since the last purchase, are more likely to take the offer.
- Response does not depend much on age.
- Customers with higher income are more likely to take the offer.
- Customers who spent more in the last 2 years are more likely to take the offer.

```
### Function to plot stacked bar charts for categorical columns
def stacked_plot(x):
    sns.set(palette="nipy_spectral")
    tabl = pd.crosstab(x, data["Response"], margins=True)
    print(tabl)
    print("-" * 120)
    tab = pd.crosstab(x, data["Response"], normalize="index")
    tab.plot(kind="bar", stacked=True, figsize=(10, 5))
    plt.legend(loc="lower left", frameon=False)
    plt.legend(loc="upper left", bbox_to_anchor=(1, 1))
    plt.show()
```

```
In [139... stacked_plot(data["Education"])
```

```
Response
                         All
Education
              52
                     2
Basic
                          54
Graduation
             974
                  152
                        1126
Master
             494
                   79
                         573
PhD
             385
                  101
                         486
            1905
All
                  334
                       2239
```

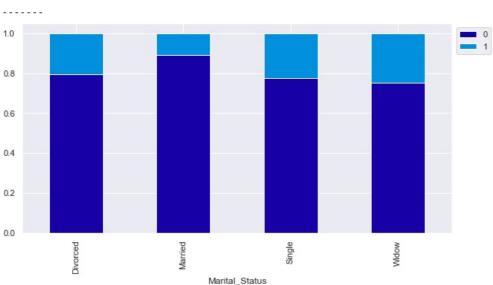
```
1.0
0.8
0.6
```



• We can see a clear trend here that customers with higher education are more likely to take the offer.

In [140...

stacked_plot(data["Marital_Status"]) Response 0 1 All Marital Status 48 Divorced 184 232 Married 1285 158 1443 378 109 Single 487 Widow 58 19 77 1905 334 2239 All



- We saw earlier that number of married customers is much more than single or divorced but divorced/widow customers are more likely to take the offer.
- Single customers are more likely to take the offer than married customers.

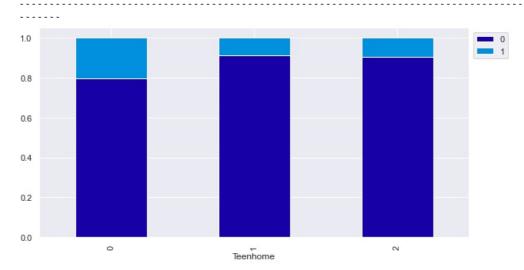
In [141...

0.8

- We can see that the number of kids increases, chances of customers taking the offer decreases.
- Customers with no kids at home are more likely to take the offer which can be expected as this includes single customers as well.

In [142...

stacked_plot(data["Teenhome"]) Response 0 1 All Teenhome 0 920 237 1157 1 938 92 1030 2 47 5 52 1905 334 2239 All

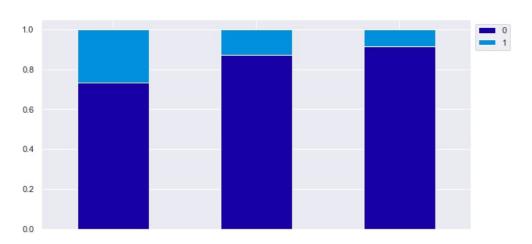


- Customers with no teens at home are most likely to take the offer.
- Customers with two teens are more likely to take the offer than customers with 1 teenager.

In [143...

stacked_plot(data["Reg_year"]) 1 All Response 0 Reg_year 2012 362 132 494 2013 1034 154 1188 2014 509 48 557 All 1905 334 2239

- - - - - -



- 2013 Reg_year
- Number of customers taking the offer is decreasing each subsequent year.
- Let's explore this further for month-wise distribution for each of the year.

```
In [144...
          sns.set(rc={"figure.figsize": (15, 15)})
          sns.heatmap(
              data.corr(),
              annot=True,
              linewidths=0.5,
              center=0,
              cbar=False,
              cmap="YlGnBu",
              fmt="0.2f",
          plt.show()
```

Year_Birth	1.00	-0.20	0.23	-0.35	-0.02	-0.16	-0.02	-0.04	-0.04	-0.02	-0.06	-0.06	-0.15	-0.14	-0.13	0.12	0.02	-0.03	-0.99	-0.03	0.01	0.01	0.00	-0.11
Income	-0.20	1.00	-0.51	0.03	0.01	0.69	0.51	0.70	0.52	0.52	0.39	-0.11	0.48	0.71	0.63	-0.65	0.16	-0.03	0.20	0.03	-0.00	0.00	-0.02	0.79
Kidhome	0.23	-0.51	1.00	-0.04	0.01	-0.50	-0.37	-0.45	-0.39	-0.37	-0.35	0.22	-0.38	-0.53	-0.50	0.45	-0.08	0.04	-0.23	0.05	-0.01	-0.00	-0.01	-0.56
Teenhome	-0.35	0.03	-0.04	1.00	0.02	0.00	-0.18	-0.27	-0.20	-0.16	-0.02	0.39	0.16	-0.11	0.05	0.14	-0.15	0.00	0.36	-0.01	0.00	0.00	0.00	-0.14
Recency	-0.02	0.01	0.01	0.02	1.00	0.02	-0.00	0.02	0.00	0.02		-0.00		0.03		-0.02	-0.20	0.01	0.02	-0.03	0.00	-0.01	0.02	0.02
MntWines	-0.16	0.69	-0.50	0.00	0.02	1.00	0.39	0.59	0.40	0.39	0.39	0.01	0.58	0.68	0.64	-0.32	0.25	-0.04	0.16	-0.15	0.04	0.04	0.01	0.89
MntFruits	-0.02	0.51	-0.37	-0.18	-0.00	0.39	1.00	0.57	0.59	0.57	0.40	-0.13	0.32	0.52	0.46	-0.42	0.13	-0.01		-0.06	0.00	0.00	-0.02	0.61
MntMeatProducts	-0.04	0.70	-0.45	-0.27	0.02	0.59	0.57	1.00	0.59	0.55	0.37	-0.15	0.34	0.71	0.51	-0.54	0.25	-0.02		-0.08	0.04	0.04	-0.01	0.86
MntFishProducts	-0.04	0.52	-0.39	-0.20	0.00	0.40	0.59	0.59	1.00	0.58	0.43	-0.14	0.32	0.57	0.46	-0.45	0.11	-0.02		-0.07	-0.01	-0.01	-0.02	0.64
MntSweetProducts	-0.02	0.52	-0.37	-0.16	0.02	0.39	0.57	0.55	0.58	1.00	0.37	-0.12	0.34	0.53	0.45	-0.42	0.12	-0.02		-0.07	-0.00	0.01	0.00	0.61
MntGoldProds	-0.06	0.39	-0.35	-0.02	0.02	0.39	0.40	0.37	0.43	0.37	1.00	0.05	0.41	0.48	0.39	-0.25	0.14	-0.03	0.06	-0.14	0.02	0.02	0.01	0.53
NumDealsPurchases	-0.06	-0.11	0.22	0.39	-0.00	0.01	-0.13	-0.15	-0.14	-0.12	0.05	1.00	0.26	-0.05	0.07	0.35		0.00	0.07	-0.19	-0.00	0.00	0.01	-0.06
NumWebPurchases	-0.15	0.48	-0.38	0.16	-0.00	0.58	0.32	0.34	0.32	0.34	0.41	0.26	1.00	0.44	0.55	-0.04	0.16	-0.02	0.16	-0.18	0.03	0.02	0.01	0.55
NumCatalogPurchases	-0.14	0.71	-0.53	-0.11	0.03	0.68	0.52	0.71	0.57	0.53	0.48	-0.05	0.44	1.00	0.57	-0.53	0.24	-0.02	0.14	-0.09	0.01	0.01	-0.02	0.81
NumStorePurchases	-0.13	0.63	-0.50	0.05	0.00	0.64	0.46	0.51	0.46	0.45	0.39	0.07	0.55	0.57	1.00	-0.43	0.04	-0.02	0.14	-0.10	-0.00	0.00	0.01	0.67
NumWebVisitsMonth	0.12	-0.65	0.45	0.14	-0.02	-0.32	-0.42	-0.54	-0.45	-0.42	-0.25	0.35	-0.04	-0.53	-0.43	1.00		0.02	-0.12	-0.25	0.04	0.03	0.04	-0.50
Response	0.02	0.16	-0.08	-0.15	-0.20	0.25	0.13	0.25	0.11	0.12	0.14	0.00	0.16	0.24	0.04	-0.00	1.00	-0.00	-0.02	-0.17	0.03	0.02	0.01	0.27
Complain	-0.03	-0.03	0.04	0.00	0.01	-0.04	-0.01	-0.02	-0.02	-0.02	-0.03	0.00	-0.02	-0.02		0.02	-0.00	1.00		-0.02	-0.03	-0.03	-0.01	-0.04
Age	-0.99	0.20	-0.23	0.36	0.02	0.16	0.02	0.04	0.04	0.02	0.06	0.07	0.16	0.14	0.14	-0.12		0.02	1.00	0.03	-0.01	-0.01	-0.01	0.11
Reg_year	-0.03	0.03	0.05		-0.03	-0.15	-0.06	-0.08	-0.07	-0.07	-0.14	-0.19	-0.18	-0.09	-0.10	-0.25	-0.17	-0.02	0.03	1.00	-0.36	-0.37	-0.10	-0.14
Reg_quarter	0.01	-0.00	-0.01	0.00	0.00	0.04	0.00	0.04	-0.01	-0.00	0.02	-0.00	0.03	0.01	-0.00	0.04	0.03	-0.03	-0.01	-0.36	1.00	0.97	-0.02	0.03
Reg_month	0.01	0.00	-0.00	0.00	-0.01	0.04	0.00	0.04	-0.01	0.01	0.02	0.00	0.02	0.01		0.03	0.02	-0.03	-0.01	-0.37	0.97	1.00	-0.01	0.04
Reg_week	0.00	-0.02	-0.01	0.00	0.02	0.01	-0.02	-0.01	-0.02	0.00	0.01	0.01	0.01	-0.02	0.01	0.04	0.01	-0.01	-0.01	-0.10	-0.02	-0.01	1.00	-0.00
Total_Amount_Spent	-0.11	0.79	-0.56	-0.14	0.02	0.89	0.61	0.86	0.64	0.61	0.53	-0.06	0.55	0.81	0.67	-0.50	0.27	-0.04	0.11	-0.14	0.03	0.04	-0.00	1.00
	Year_Birth	псоте	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishProducts	MntSweetProducts	MntGoldProds	NumDealsPurchases	NumWebPurchases	NumCatalogPurchases	NumStorePurchases	NumWebVisitsMonth	Response	Complain	Age	Reg_year	Reg_quarter	Reg_month	Reg_week	Total_Amount_Spent

- As expected, age and year of birth have a high negative correlation. We can drop one of them.
- Registration month, quarter and year columns are highly correlated which can be expected as we extracted these columns from the same column.

- We can drop one of the columns in a quarter or month as they are almost perfectly correlated.
- Total amount spent is correlated with variables they are associated with. We can drop this column.

Data Preparation

Recency

MntWines

MntFruits

MntMeatProducts
MntFishProducts

MntSweetProducts

NumDealsPurchases NumWebPurchases

NumCatalogPurchases

 ${\tt NumStorePurchases}$

NumWebVisitsMonth

MntGoldProds

0

0

0

0

0

0

0

0

0

```
In [210...
           education = {'Basic':1, 'Graduation':2, 'Master':3, 'PhD':4}
data['Education']=data['Education'].map(education)
           marital_status = {'Married':1, 'Single':2, 'Divorced':3, 'Widow':4}
           data['Marital_Status']=data['Marital_Status'].map(marital_status)
         Split the data into train and test sets
In [211...
           # Separating target variable and other variables
           X = data.drop(columns="Response")
           Y = data["Response"]
In [212...
           # Dropping birth year and Dt_Customer columns
           X.drop(
                columns=[
                     "Year Birth",
                    "Dt_Customer",
                    "Reg_quarter"
                    "Total_Amount_Spent",
                inplace=True,
In [213...
           # Splitting the data into train and test sets
           X_train, X_test, y_train, y_test = train_test_split(
                X, Y, test size=0.30, random state=1, stratify=Y
           print(X_train.shape, X_test.shape)
          (1567, 22) (672, 22)
         Missing-Value Treatment
           · We will use KNN imputer to impute missing values.
           • KNNImputer: Each sample's missing values are imputed by looking at the nineighbors nearest neighbors found in the training set.
             Default value for n_neighbors=5.
           • KNN imputer replaces missing values using the average of k nearest non-missing feature values.
           • Nearest points are found based on euclidean distance.
In [214...
           imputer = KNNImputer(n neighbors=5)
In [216...
           #Fit and transform the train data
           X_{\text{train}} = \text{pd.DataFrame(imputer.fit\_transform(}X_{\text{train}}), \text{columns} = X_{\text{train.columns}})
           #Transform the test data
           X test=pd.DataFrame(imputer.fit transform(X test),columns=X test.columns)
In [217...
           #Checking that no column has missing values in train or test sets
           print(X_train.isna().sum())
print('-'*30)
           print(X test.isna().sum())
          Education
          Marital Status
                                    0
          Income
                                    0
          Kidhome
                                    0
          Teenhome
                                    0
```

```
Complain
                  0
Age
                  0
0
Reg_year
Reg_month
               0
Reg week
dtype: int64
Education 0
Marital_Status 0
Income
                   0
                  0
0
Kidhome
Teenhome
Recency
                  0
0
0
MntWines
MntFruits
MntMeatProducts
MntFishProducts
MntSweetProducts
                   0
MntGoldProds
                   0
NumDealsPurchases
NumWebPurchases
NumCatalogPurchases 0
NumStorePurchases
                  0
NumWebVisitsMonth
Complain
                    0
Age
Reg year
                    0
                   0
Reg_month
Reg week
dtype: int64
```

- All missing values have been treated.
- · Let's inverse map the encoded values.

```
## Function to inverse the encoding
def inverse_mapping(x,y):
    inv_dict = {v: k for k, v in x.items()}
    X_train[y] = np.round(X_train[y]).map(inv_dict).astype('category')
    X_test[y] = np.round(X_test[y]).map(inv_dict).astype('category')

inverse_mapping(education, 'Education')
    inverse_mapping(marital_status, 'Marital_Status')
```

• Checking inverse mapped values/categories.

```
In [220...
          cols = X train.select dtypes(include=['object','category'])
          for i in cols.columns:
             print(X_train[i].value_counts())
print('*'*30)
         Graduation 793
                      420
         Master
         PhD
                       316
         Basic
                      38
         Name: Education, dtype: int64
         Married 993
         Sinale
                    346
         Divorced 168
         Widow
                    60
         Name: Marital Status, dtype: int64
```

```
cols = X_test.select_dtypes(include=['object','category'])
for i in cols.columns:
    print(X_test[i].value_counts())
    print('***30)
Graduation 333
```

PhD 170
Master 153
Basic 16
Name: Education, dtype: int64

```
*********
Married 450
Single 141
Divorced 64
Widow 17
Name: Marital_Status, dtype: int64
***********
```

Inverse mapping returned original labels.

Encoding categorical varaibles

```
In [223...
X_train=pd.get_dummies(X_train,drop_first=True)
X_test=pd.get_dummies(X_test,drop_first=True)
print(X_train.shape, X_test.shape)

(1567, 26) (672, 26)
```

After encoding there are 26 columns.

Building the model

Model evaluation criterion:

Model can make wrong predictions as:

- 1. Predicting a customer will buy the product and the customer doesn't buy Loss of resources
- 2. Predicting a customer will not buy the product and the customer buys Loss of opportunity

Which case is more important?

• Predicting that customer will not buy the product but he buys i.e. losing on a potential source of income for the company because that customer will not be targeted by the marketing team when he should be targeted.

How to reduce this loss i.e need to reduce False Negatives?

• Company wants Recall to be maximized, greater the Recall lesser the chances of false negatives.

Let's start by building different models using KFold and cross_val_score with pipelines and tune the best model using GridSearchCV and RandomizedSearchCV

• Stratified K-Folds cross-validation provides dataset indices to split data into train/validation sets. Split dataset into k consecutive folds (without shuffling by default) keeping the distribution of both classes in each fold the same as the target variable. Each fold is then used once as validation while the k - 1 remaining folds form the training set.

```
In [157...
           models = [] # Empty list to store all the models
           # Appending pipelines for each model into the list
           models.append(
                    "LR"
                    Pipeline(
                             ("scaler", StandardScaler()),
("log_reg", LogisticRegression(random_state=1)),
                         ]
                    ),
           models.append(
                    "RF"
                    Pipeline(
                        steps=[
                             ("scaler", StandardScaler()),
                             ("random_forest", RandomForestClassifier(random_state=1)),
                    ),
```

```
models.append(
         Pipeline(
             steps=[
                 ("scaler", StandardScaler()),
                 ("gradient_boosting", GradientBoostingClassifier(random_state=1)),
             ]
         ),
models.append(
         "ADB",
         Pipeline(
             steps=[
                 ("scaler", StandardScaler()),
                 ("adaboost", AdaBoostClassifier(random_state=1)),
         ),
models.append(
     (
         "XGB"
         Pipeline(
                 ("scaler", StandardScaler()),
("xgboost", XGBClassifier(random_state=1,eval_metric='logloss')),
         ),
     )
models.append(
         "DTREE"
         Pipeline(
             steps=[
                 ("scaler", StandardScaler()),
                 ("decision_tree", DecisionTreeClassifier(random_state=1)),
         ),
     )
 )
results = [] # Empty list to store all model's CV scores
names = [] # Empty list to store name of the models
# loop through all models to get the mean cross validated score
for name, model in models:
     scoring = "recall"
     kfold = StratifiedKFold(
        n_splits=5, shuffle=True, random_state=1
     ) # Setting number of splits equal to 5
     cv result = cross val score(
         estimator=model, X=X_train, y=y_train, scoring=scoring, cv=kfold
     results.append(cv_result)
     names.append(name)
     print("{}: {}".format(name, cv_result.mean() * 100))
LR: 30.814061054579096
RF: 19.22294172062905
```

LR: 30.814061054579096 RF: 19.22294172062905 GBM: 30.74005550416281 ADB: 37.6040703052729 XGB: 29.92599444958372 DTREE: 38.880666049953746

```
"RF",
         Pipeline(
             steps=[
                 ("scaler", StandardScaler()),
                 ("random forest", RandomForestClassifier(random state=1)),
        ),
models.append(
         "GBM",
        Pipeline(
             steps=[
                 ("scaler", StandardScaler()),
                 ("gradient_boosting", GradientBoostingClassifier(random_state=1)),
        ),
    )
models.append(
    (
         "ADB".
        Pipeline(
            steps=[
                 ("scaler", StandardScaler()),
                 ("adaboost", AdaBoostClassifier(random_state=1)),
        ),
    )
models.append(
         "XGB"
        Pipeline(
             steps=[
                 ("scaler", StandardScaler()),
                 ("xgboost", XGBClassifier(random_state=1,eval_metric='logloss')),
             1
        ),
    )
models.append(
         "DTREE",
        Pipeline(
            steps=[
                 ("scaler", StandardScaler()),
                 ("decision tree", DecisionTreeClassifier(random state=1)),
             1
        ),
)
results = [] # Empty list to store all model's CV scores
names = [] # Empty list to store name of the models
# loop through all models to get the mean cross validated score
for name, model in models:
    scoring = "recall"
    kfold = StratifiedKFold(
        n_splits=5, shuffle=True, random_state=1
     ) # Setting number of splits equal to 5
    cv_result = cross_val_score(
        estimator=model, X=X_train, y=y_train, scoring=scoring, cv=kfold
    results.append(cv result)
    names.append(name)
    print("{}: {}".format(name, cv_result.mean() * 100))
LR: 30.814061054579096
```

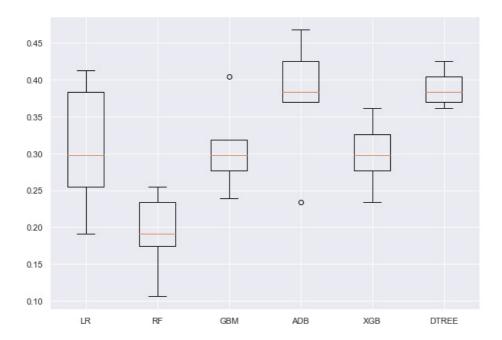
RF: 19.22294172062905 GBM: 30.74005550416281 ADB: 37.6040703052729 XGB: 29.92599444958372 DTREE: 38.880666049953746

```
# Plotting boxplots for CV scores of all models defined above
fig = plt.figure(figsize=(10, 7))

fig.suptitle("Algorithm Comparison")
ax = fig.add_subplot(111)

plt.boxplot(results)
ax.set_xticklabels(names)
```

Algorithm Comparison



- We can see that AdaBoost is giving the highest cross-validated recall followed by XGBoost
- The boxplot shows that the performance of both the models is consistent with just one outlier for AdaBoost.
- We will tune both models AdaBoost and XGBoost and see if the performance improves.

Hyperparameter Tuning

We will use pipelines with StandardScaler and AdaBoost model and tune the model using GridSearchCV and RandomizedSearchCV. We will also compare the performance and time taken by these two methods - grid search and randomized search.

We can also use the make_pipeline function instead of Pipeline to create a pipeline.

make_pipeline: This is a shorthand for the Pipeline constructor; it does not require and does not permit, naming the estimators. Instead, their names will be set to the lowercase of their types automatically.

First, let's create two functions to calculate different metrics and confusion matrix so that we don't have to use the same code repeatedly for each model.

```
In [225...
```

```
##
   Function to calculate different metric scores of the model - Accuracy, Recall and Precision
def get_metrics_score(model, flag=True):
    model: classifier to predict values of X
    # defining an empty list to store train and test results
    score_list = []
    pred_train = model.predict(X_train)
    pred_test = model.predict(X_test)
    train_acc = model.score(X train, y train)
    test acc = model.score(X test, y test)
    train_recall = metrics.recall_score(y_train, pred_train)
    test_recall = metrics.recall_score(y_test, pred_test)
    train_precision = metrics.precision_score(y_train, pred_train)
    test precision = metrics.precision score(y test, pred test)
    score_list.extend(
            train acc,
            test acc,
            train_recall,
            test_recall,
```

Function to create confusion matrix
def make_confusion_matrix(model, y_actual, labels=[1, 0]):
 """
 model: classifier to predict values of X
 y_actual: ground truth

 """
 y_predict = model.predict(X_test)
 cm = metrics.confusion_matrix(y_actual, y_predict, labels=[0, 1])
 df_cm = pd.DataFrame(
 cm,
 index=[i for i in ["Actual - No", "Actual - Yes"]],
 columns=[i for i in ["Predicted - No", "Predicted - Yes"]],
)
 group_counts = ["{0:0.0f}".format(value) for value in cm.flatten()]

group_percentages = ["{0:.2%}".format(value) for value in cm.flatten() / np.sum(cm)]
labels = [f"{v1}\n{v2}" for v1, v2 in zip(group_counts, group_percentages)]

AdaBoost

GridSearchCV

Score: 0.4830712303422756

Wall time: 51.6 s

CPU times: user 6.04 s, sys: 635 ms, total: 6.68 s

labels = np.asarray(labels).reshape(2, 2)

sns.heatmap(df_cm, annot=labels, fmt="")

plt.figure(figsize=(10, 7))

plt.ylabel("True label")
plt.xlabel("Predicted label")

```
In [161...
          %%time
          # Creating pipeline
          pipe = make pipeline(StandardScaler(), AdaBoostClassifier(random_state=1))
          # Parameter grid to pass in GridSearchCV
          param grid = {
              "adaboostclassifier__n_estimators": np.arange(10, 110, 10);
              "adaboostclassifier_learning_rate": [0.1, 0.01, 0.2, 0.05, 1],
              "adaboostclassifier base estimator": [
                  DecisionTreeClassifier(max_depth=1, random_state=1),
                  DecisionTreeClassifier(max_depth=2, random_state=1),
                  DecisionTreeClassifier(max_depth=3, random_state=1),
              ],
          }
          # Type of scoring used to compare parameter combinations
          scorer = metrics.make scorer(metrics.recall score)
          # Calling GridSearchCV
          \label{eq:grid_cv} grid\_cv = GridSearchCV(estimator=pipe, param\_grid=param\_grid, scoring=scorer, cv=5, n\_jobs = -1)
          # Fitting parameters in GridSeachCV
          grid cv.fit(X train, y train)
               "Best Parameters:{} \nScore: {}".format(grid_cv.best_params_, grid_cv.best_score_)
         Best Parameters:{'adaboostclassifier base estimator': DecisionTreeClassifier(max depth=2, random state=1), 'adab
         oostclassifier learning rate': 1, 'adaboostclassifier n estimators': 100}
```

```
In [227... | %time
          # Creating pipeline
          pipe = make pipeline(StandardScaler(), AdaBoostClassifier(random state=1))
          # Parameter grid to pass in GridSearchCV
          param grid = {
              "adaboostclassifier__n_estimators": np.arange(10, 110, 10),
"adaboostclassifier__learning_rate": [0.1, 0.01, 0.2, 0.05, 1],
               "adaboostclassifier base estimator": [
                   DecisionTreeClassifier(max depth=1, random state=1),
                  DecisionTreeClassifier(max_depth=2, random_state=1),
                  DecisionTreeClassifier(max_depth=3, random_state=1),
              ],
          }
          # Type of scoring used to compare parameter combinations
          scorer = metrics.make scorer(metrics.recall score)
          # Calling GridSearchCV
          grid cv = GridSearchCV(estimator=pipe, param grid=param grid, scoring=scorer, cv=5, n jobs = -1)
          # Fitting parameters in GridSeachCV
          grid cv.fit(X train, y train)
          print(
               "Best Parameters:{} \nScore: {}".format(grid cv.best params , grid cv.best score )
         Best Parameters:{'adaboostclassifier base estimator': DecisionTreeClassifier(max depth=2, random state=1), 'adab
         oostclassifier learning rate': 1, 'adaboostclassifier n estimators': 100}
         Score: 0.4830712303422756
         CPU times: user 5.97 s, sys: 638 ms, total: 6.61 s
         Wall time: 58.5 s
In [162...
          # Creating new pipeline with best parameters
          abc tuned1 = make pipeline(
              StandardScaler(),
              AdaBoostClassifier(
                  base estimator=DecisionTreeClassifier(max depth=2, random state=1),
                   n estimators=100,
                   learning_rate=1,
                   random state=1,
              ),
          # Fit the model on training data
          abc_tuned1.fit(X_train, y_train)
Out[162... Pipeline(steps=[('standardscaler', StandardScaler()),
                          ('adaboostclassifier',
                           AdaBoostClassifier(base estimator=DecisionTreeClassifier(max depth=2,
                                                                                       random state=1),
                                               learning_rate=1, n_estimators=100,
                                               random state=1))])
In [163...
          # Calculating different metrics
          get metrics score(abc tuned1)
          # Creating confusion matrix
          make_confusion_matrix(abc_tuned1, y_test)
         Accuracy on training set : 0.9929802169751116
         Accuracy on test set : 0.8586309523809523
         Recall on training set : 0.9786324786324786
         Recall on test set : 0.44
         Precision on training set : 0.9744680851063829
         Precision on test set : 0.5301204819277109
                                                                                 500
           ŝ
           Actual .
                                                                                 - 400
         45
```


- The test recall has increased by ~7% as compared to cross-validated recall
- The tuned Adaboost model is slightly overfitting the training data
- The test recall is still less than 50% i.e. the model is not good at identifying potential customers who would take the offer.

RandomizedSearchCV

```
In [164...
           %%time
           # Creating pipeline
           pipe = make_pipeline(StandardScaler(), AdaBoostClassifier(random_state=1))
           # Parameter grid to pass in RandomizedSearchCV
           param_grid = {
                "adaboostclassifier__n_estimators": np.arange(10, 110, 10),
"adaboostclassifier__learning_rate": [0.1, 0.01, 0.2, 0.05, 1],
"adaboostclassifier__base_estimator": [
                    DecisionTreeClassifier(max_depth=1, random_state=1),
DecisionTreeClassifier(max_depth=2, random_state=1),
                    DecisionTreeClassifier(max depth=3, random state=1),
                1.
           # Type of scoring used to compare parameter combinations
           scorer = metrics.make scorer(metrics.recall score)
           #Calling RandomizedSearchCV
           abc_tuned2 = RandomizedSearchCV(estimator=pipe, param_distributions=param_grid, n_iter=50, scoring=scorer, cv=5,
           #Fitting parameters in RandomizedSearchCV
           abc_tuned2.fit(X_train,y_train)
           print("Best parameters are {} with CV score={}:" .format(abc tuned2.best params ,abc tuned2.best score ))
          Best parameters are {'adaboostclassifier n estimators': 100, 'adaboostclassifier learning rate': 1, 'adaboostcl
          assifier__base_estimator': DecisionTreeClassifier(max_depth=2, random_state=1)} with CV score=0.4830712303422756:
          CPU times: user 59 s, sys: 459 ms, total: 59.5 s
          Wall time: 1min
```

In [228...

```
%time
# Creating pipeline
pipe = make_pipeline(StandardScaler(), AdaBoostClassifier(random_state=1))
# Parameter grid to pass in RandomizedSearchCV
param grid = {
    "adaboostclassifier__n_estimators": np.arange(10, 110, 10),
"adaboostclassifier__learning_rate": [0.1, 0.01, 0.2, 0.05, 1],
    "adaboostclassifier__base_estimator": [
        DecisionTreeClassifier(max_depth=1, random_state=1),
        DecisionTreeClassifier(max depth=2, random state=1),
        DecisionTreeClassifier(max_depth=3, random_state=1),
    ],
# Type of scoring used to compare parameter combinations
scorer = metrics.make_scorer(metrics.recall_score)
#Calling RandomizedSearchCV
abc_tuned2 = RandomizedSearchCV(estimator=pipe, param_distributions=param_grid, n_iter=50, scoring=scorer, cv=5,
#Fitting parameters in RandomizedSearchCV
abc_tuned2.fit(X_train,y_train)
print("Best parameters are {} with CV score={}:" .format(abc tuned2.best params ,abc tuned2.best score ))
```

Best parameters are {'adaboostclassifier__n_estimators': 100, 'adaboostclassifier__learning_rate': 1, 'adaboostcl assifier__base_estimator': DecisionTreeClassifier(max_depth=2, random_state=1)} with CV score=0.4830712303422756: CPU times: user 2.17 s, sys: 174 ms, total: 2.34 s Wall time: 18.9 s

```
# Calculating different metrics
get_metrics_score(abc_tuned2)

# Creating confusion matrix
make_confusion_matrix(abc_tuned2, y_test)
```

Accuracy on training set : 0.9929802169751116 Accuracy on test set : 0.8586309523809523 Recall on training set : 0.9786324786324786 Recall on test set : 0.44 Precision on training set : 0.9744680851063829 Precision on test set : 0.5301204819277109

- Grid search took a significantly longer time than random search. This difference would further increase as the number of parameters increases but the parameters from random search are the same as compared grid search.
- This can happen by chance but it is not guaranteed to happen for each algorithm.

XGBoost

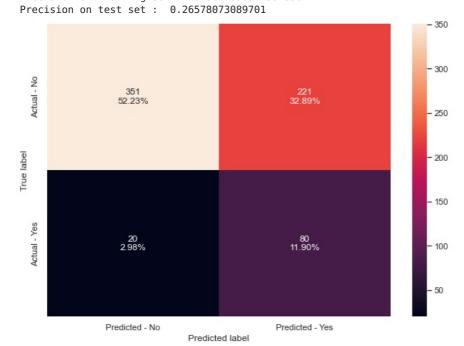
```
In [167...
                  %%time
                   #Creating pipeline
                   pipe=make pipeline(StandardScaler(), XGBClassifier(random state=1,eval metric='logloss'))
                   #Parameter grid to pass in GridSearchCV
                   'xgbclassifier__subsample':[0.7,0.8,0.9,1]}
                   # Type of scoring used to compare parameter combinations
                   scorer = metrics.make scorer(metrics.recall score)
                   #Calling GridSearchCV
                   grid cv = GridSearchCV(estimator=pipe, param grid=param grid, scoring=scorer, cv=5, n jobs = -1)
                   #Fitting parameters in GridSeachCV
                   grid cv.fit(X train,y train)
                   print("Best parameters are {} with CV score={}:" .format(grid_cv.best_params_,grid_cv.best_score_))
                 Best parameters are {'xgbclassifier_gamma': 3, 'xgbclassifier_learning_rate': 0.01, 'xgbclassifier_n_estimator s': 150, 'xgbclassifier_scale_pos_weight': 10, 'xgbclassifier_subsample': 0.8} with CV score=0.8765032377428307
                 CPU times: user 59.6 s, sys: 5.28 s, total: 1min 4s
                 Wall time: 11min 47s
In [168...
                   %%time
                   #Creating pipeline
                   pipe=make pipeline(StandardScaler(), XGBClassifier(random state=1,eval metric='logloss'))
                   #Parameter grid to pass in GridSearchCV
                   param\_grid= \verb| ['xgbclassifier\_n_estimators':np.arange(50,300,50), 'xgbclassifier\_scale\_pos\_weight':[0,1,2,5,10], | (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), (20,1), 
                                          'xgbclassifier learning rate':[0.01,0.1,0.2,0.05], 'xgbclassifier gamma':[0,1,3,5],
                                          'xgbclassifier_subsample':[0.7,0.8,0.9,1]}
                   # Type of scoring used to compare parameter combinations
                   scorer = metrics.make scorer(metrics.recall score)
                   #Calling GridSearchCV
                   grid cv = GridSearchCV(estimator=pipe, param grid=param grid, scoring=scorer, cv=5, n jobs = -1)
                   #Fitting parameters in GridSeachCV
                   grid cv.fit(X train,y train)
                   print("Best parameters are {} with CV score={}:" .format(grid cv.best params ,grid cv.best score ))
                 Best parameters are {'xgbclassifier__gamma': 3, 'xgbclassifier__learning_rate': 0.01, 'xgbclassifier__n_estimator s': 150, 'xgbclassifier__scale_pos_weight': 10, 'xgbclassifier__subsample': 0.8} with CV score=0.8765032377428307
                 CPU times: user 57.8 s, sys: 5.06 s, total: 1min 2s
                 Wall time: 10min 2s
In [169...
                   # Creating new pipeline with best parameters
                   xgb tuned1 = make pipeline(
                          StandardScaler(),
                          XGBClassifier(
                                 random_state=1,
                                 n estimators=150
                                  scale_pos_weight=10,
                                  subsample=0.8,
                                  learning_rate=0.01,
                                  gamma=3.
                                  eval_metric='logloss',
                          ),
                   # Fit the model on training data
                   xgb_tuned1.fit(X_train, y_train)
Out[169... Pipeline(steps=[('standardscaler', StandardScaler()),
                                                ('xgbclassifier',
                                                 XGBClassifier(eval_metric='logloss', gamma=3,
                                                                            learning rate=0.01, n estimators=150,
                                                                            random_state=1, scale_pos_weight=10,
```

In [170...

```
# Calculating different metrics
get_metrics_score(xgb_tuned1)

# Creating confusion matrix
make_confusion_matrix(xgb_tuned1, y_test)

Accuracy on training set : 0.6617740906190173
Accuracy on test set : 0.6413690476190477
Recall on training set : 0.9658119658119658
Recall on test set : 0.8
Precision on training set : 0.30213903743315507
```



• The test recall has increased by ~40% as compared to the result from cross-validation with default parameters.

RandomizedSearchCV

```
In [171...
           %time
           #Creating pipeline
           pipe=make pipeline(StandardScaler(),XGBClassifier(random state=1,eval metric='logloss', n estimators = 50))
           #Parameter grid to pass in RandomizedSearchCV
           param_grid={'xgbclassifier__n_estimators':np.arange(50,300,50),
                        'xgbclassifier__scale_pos_weight':[0,1,2,5,10],
                        'xgbclassifier_learning_rate':[0.01,0.1,0.2,0.05],
'xgbclassifier_gamma':[0,1,3,5],
                        'xgbclassifier_subsample':[0.7,0.8,0.9,1],
                       'xgbclassifier__max_depth':np.arange(1,10,1),
'xgbclassifier__reg_lambda':[0,1,2,5,10]}
           # Type of scoring used to compare parameter combinations
           scorer = metrics.make_scorer(metrics.recall_score)
           #Calling RandomizedSearchCV
           randomized cv = RandomizedSearchCV(estimator=pipe, param distributions=param grid, n iter=50, scoring=scorer, cv=
           #Fitting parameters in RandomizedSearchCV
           randomized cv.fit(X train,y train)
           print("Best parameters are {} with CV score={}:" .format(randomized_cv.best_params_,randomized_cv.best_score_))
```

Best parameters are {'xgbclassifier__subsample': 0.8, 'xgbclassifier__scale_pos_weight': 10, 'xgbclassifier__reg_lambda': 2, 'xgbclassifier__n_estimators': 50, 'xgbclassifier__max_depth': 2, 'xgbclassifier__learning_rate': 0.0

```
In [231...
          %time
          #Creating pipeline
          pipe=make pipeline(StandardScaler(),XGBClassifier(random state=1,eval metric='logloss', n estimators = 50))
          #Parameter grid to pass in RandomizedSearchCV
          'xgbclassifier__gamma':[0,1,3,5],
'xgbclassifier__subsample':[0.7,0.8,0.9,1],
'xgbclassifier__max_depth':np.arange(1,10,1),
                       'xgbclassifier__reg_lambda':[0,1,2,5,10]}
          # Type of scoring used to compare parameter combinations
          scorer = metrics.make_scorer(metrics.recall_score)
          #Calling RandomizedSearchCV
          randomized cv = RandomizedSearchCV(estimator=pipe, param distributions=param grid, n iter=50, scoring=scorer, cv=
          #Fitting parameters in RandomizedSearchCV
          randomized_cv.fit(X_train,y_train)
          print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score ))
         Best parameters are {'xgbclassifier subsample': 0.8, 'xgbclassifier scale pos weight': 10, 'xgbclassifier reg
         lambda': 2, 'xgbclassifier__n_estimators': 50, 'xgbclassifier__max_depth': 2, 'xgbclassifier__learning_rate': 0.0
         5, 'xgbclassifier_ gamma': 3} with CV score=0.9148011100832563:
         CPU times: user 1min 41s, sys: 735 ms, total: 1min 42s
         Wall time: 1min 43s
In [233...
          randomized cv.best params
'xgbclassifier__reg_lambda': 2,
          'xgbclassifier__n_estimators': 50,
          'xgbclassifier__max_depth': 2,
'xgbclassifier__learning_rate'
                          learning rate': 0.05,
          'xgbclassifier_gamma': 3}
In [172...
          # Creating new pipeline with best parameters
          xgb_tuned2 = Pipeline(
              steps=[
                  ("scaler", StandardScaler()),
                      "XGB"
                      XGBClassifier(
                          random state=1,
                          n_estimators=randomized_cv.best_params_['xgbclassifier__n_estimators'],
                          scale pos weight=10,
                          gamma=3,
                          subsample=0.9.
                          learning_rate= 0.05,
                          eval metric='logloss', max depth = 2, reg lambda = 2
                      ),
                  ),
              ]
          # Fit the model on training data
          xgb tuned2.fit(X train, y train)
Out[172... Pipeline(steps=[('scaler', StandardScaler()),
                          ('XGB'
                          XGBClassifier(eval metric='logloss', gamma=3,
                                         learning_rate=0.05, max_depth=2, n_estimators=50,
                                         random state=1, reg lambda=2,
                                         scale_pos_weight=10, subsample=0.9))])
```

5, 'xgbclassifier_gamma': 3} with CV score=0.9148011100832563:

CPU times: user 1min 32s, sys: 211 ms, total: 1min 32s

Wall time: 1min 33s

In [173...

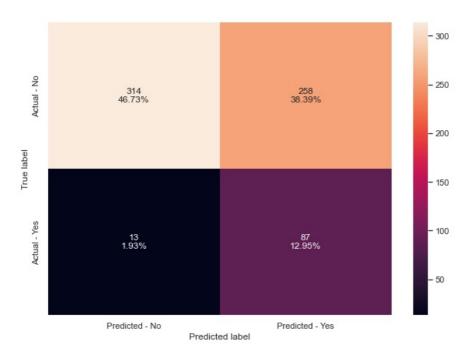
```
# Calculating different metrics
get_metrics_score(xgb_tuned2)

# Creating confusion matrix
make_confusion_matrix(xgb_tuned2, y_test)
```

Accuracy on training set: 0.5851946394384173 Accuracy on test set: 0.5967261904761905 Recall on training set: 0.9529914529914529

Recall on test set : 0.87

Precision on training set : 0.25870069605568446 Precision on test set : 0.25217391304347825



• Random search is giving better results than Grid search.

"Adaboost with GridSearchCV",
"Adaboost with RandomizedSearchCV",
"XGBoost with GridSearchCV",
"XGBoost with RandomizedSearchCV",

- The test recall has increased as compared to the test recall from grid search but the accuracy and precision have decreased.
- The overfitting in the model has also decreased

Comparing all models

```
In [234...
           # defining list of models
           models = [abc tuned1, abc tuned2, xgb tuned1, xgb tuned2]
           # defining empty lists to add train and test results
           acc_train = []
           acc_test = []
           recall_train = []
recall_test = []
           precision_train = []
           precision_test = []
           # looping through all the models to get the metrics score - Accuracy, Recall and Precision
           for model in models:
               j = get metrics score(model, False)
               acc_train.append(j[0])
               acc_test.append(j[1])
               recall_train.append(j[2])
recall_test.append(j[3])
               precision_train.append(j[4])
               precision_test.append(j[5])
In [235...
           comparison frame = pd.DataFrame(
                    "Model": [
```

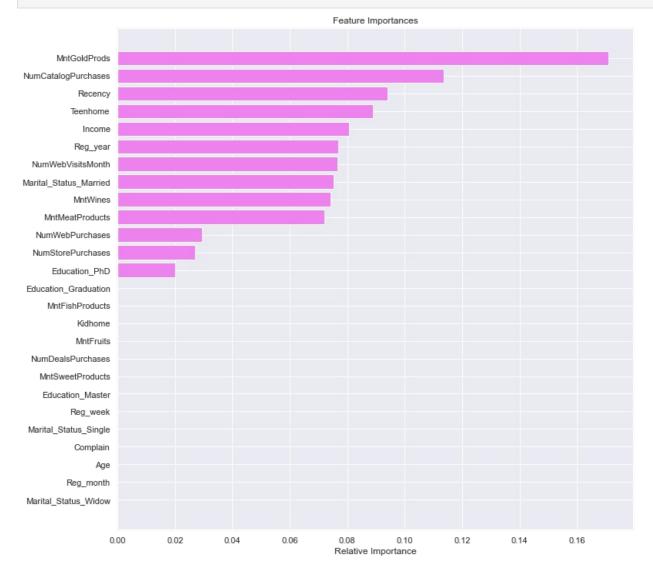
Out[235...

	Model	Train_Accuracy	Test_Accuracy	Train_Recall	Test_Recall	Train_Precision	Test_Precision
3	XGBoost with RandomizedSearchCV	0.585195	0.596726	0.952991	0.87	0.258701	0.252174
2	XGBoost with GridSearchCV	0.661774	0.641369	0.965812	0.80	0.302139	0.265781
0	Adaboost with GridSearchCV	0.992980	0.858631	0.978632	0.44	0.974468	0.530120
1	Adaboost with RandomizedSearchCV	0.992980	0.858631	0.978632	0.44	0.974468	0.530120

- The xgboost model tuned using randomised search is giving the best test recall of 0.87 but it has the least train and test precision.
- Let's see the feature importance from the tuned xgboost model

```
feature_names = X_train.columns
   importances = xgb_tuned2[1].feature_importances_
   indices = np.argsort(importances)

plt.figure(figsize=(12, 12))
   plt.title("Feature Importances")
   plt.barh(range(len(indices)), importances[indices], color="violet", align="center")
   plt.yticks(range(len(indices)), [feature_names[i] for i in indices])
   plt.xlabel("Relative Importance")
   plt.show()
```



• Amount spent on gold products is the most important feature, followed by NumCatalogPurchases and the Recency of the customer.

Business Recommendations

- Company should target customers who buy premium products gold products or high-quality wines as these customers can spend more and are more likely to purchase the offer. The company should further launch premium offers for such customers. Such offers can also be extended to customers with higher income.
- We observed in our analysis that ~64% of customers are married but single customers, including divorced and widowed, are more likely to take the offer. The company should expand its customers by customizing offers to attract more single customers.
- · Customers who are frequent buyers, should be targeted more by the company and offer them added benefits.
- Total amount spent has decreased over the years which shows that either our product qualities have declined or the company lacks marketing strategies. The company should constantly improve its marketing strategies to address such issues.
- Our analysis showed that ~99% of customers had no complaints in the last two years which can be due to the lack of feedback options
 for customers. The company should create easy mechanisms to gather feedback from the customers and use it to identify major
 concerns if any.
- The number of web visits is an important feature and the company should work on customizing its website to allow more traffic on the website. The company can improve the interface and provide easy check-in, check-out and delivery options.

In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js