Problem Statement:

'All You Need' Supermarket is planning for the year-end sale. They want to launch a new offer - gold membership for only $499 which is
\$999 on normal days(that gives a 20% discount on all purchases).

It will be valid only for existing customers, they are planning to start a campaign through phone calls.

The best way to reduce the cost of the campaign is to make a predictive model which will classify customers who might purchase the offer,
using the data they gathered during last year’'s campaign.

We will build a model for classifying whether customers will reply with a positive response or not.

Objective:

e What are the different factors which affect the target variable? What business recommendations can we give based on the analysis?
e How can we improve model performance using hyperparameter tuning and prevent data leakage using pipelines while building a model
to predict the response of a customer?

Data Dictionary

o Response (target) - 1 if customer accepted the offer in the last campaign, 0 otherwise
e |D - Unique ID of each customer

e Year_Birth - Age of the customer

e Complain - 1 if the customer complained in the last 2 years

e Dt_Customer - date of customer's enrollment with the company

e Education - customer's level of education

e Marital - customer's marital status

o Kidhome - number of small children in customer's household

e Teenhome - number of teenagers in customer's household

e Income - customer's yearly household income

e MntFishProducts - the amount spent on fish products in the last 2 years

o MntMeatProducts - the amount spent on meat products in the last 2 years

e MntFruits - the amount spent on fruits products in the last 2 years

o MntSweetProducts - amount spent on sweet products in the last 2 years

o MntWines - the amount spent on wine products in the last 2 years

e MntGoldProds - the amount spent on gold products in the last 2 years

o NumDealsPurchases - number of purchases made with discount

¢ NumCatalogPurchases - number of purchases made using catalog (buying goods to be shipped through the mail)
¢ NumStorePurchases - number of purchases made directly in stores

o NumWebPurchases - number of purchases made through the company's website
o NumWebVisitsMonth - number of visits to company's website in the last month

e Recency - number of days since the last purchase

Import necessary libraries

import warnings

warnings.filterwarnings("ignore")

# Libraries to help with reading and manipulating data
import pandas as pd

import numpy as np

# libaries to help with data visualization
smatplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns

# Libraries to tune model, get different metric scores, and split data

from sklearn import metrics

from sklearn.model selection import train test split, StratifiedKFold, cross val score
from sklearn.preprocessing import StandardScaler

from sklearn.model selection import GridSearchCV, RandomizedSearchCV

from sklearn.impute import KNNImputer
from sklearn.pipeline import Pipeline, make pipeline

#libraries to help with model building



from sklearn.linear model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import (

AdaBoostClassifier,
GradientBoostingClassifier,
RandomForestClassifier)
from xgboost import XGBClassifier

Load and view the dataset

data = pd.read excel("marketing data.xlsx")

data.head()

ID Year_Birth
0 1826 1970
1 1 1961
2 10476 1958
3 1386 1967
4 5371 1989

5 rows x 22 columns

L]

data.info()

Education
Graduation
Graduation

Graduation

Graduation

Graduation

Marital_Status Income Kidhome Teenhome

Divorced 84835.0 0 0
Single 57091.0 0 0
Married 67267.0 0 1
Together 32474.0 1 1
Single 21474.0 1 0

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2240 entries, 0 to 2239

Data columns (total 22 columns):

Non-Null Count Dtype

#  Column

0 ID

1  Year_ Birth

2 Education

3 Marital Status
4 Income

5 Kidhome

6  Teenhome

7  Dt_Customer

8 Recency

9 MntWines
10 MntFruits
11 MntMeatProducts
12 MntFishProducts
13 MntSweetProducts

14 MntGoldProds

15 NumDealsPurchases
16 NumWebPurchases

17 NumCatalogPurchases
18 NumStorePurchases
19 NumWebVisitsMonth
20 Response
21 Complain
dtypes: float64(1l), int64(18),
385.1+ KB

memory usage:

2240

non-null int64
non-null int64
non-null object
non-null  object
non-null float64
non-null int64
non-null int64
non-null  object
non-null int64
non-null int64
non-null int64
non-null int64
non-null int64
non-null int64
non-null int64
non-null int64
non-null int64
non-null int64
non-null int64
non-null int64
non-null int64
non-null int64
object(3)

e There are a total of 22 columns and 2,240 observations in the dataset

Dt_Customer
6/16/14
6/15/14
5/13/14

2014-11-05
00:00:00

2014-08-04
00:00:00

Recency
0
0
0
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MntFishProducts MntSwe
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e We can see that income column have less than 2,240 non-null values i.e. column have missing values. We'll explore this further.

Let's check the number of unique values in each column

data.nunique

ID
Year Birth
Education

()

Marital Status

2240
59



Income 1974

Kidhome 3
Teenhome 3
Dt_Customer 663
Recency 100
MntWines 776
MntFruits 158
MntMeatProducts 558
MntFishProducts 182
MntSweetProducts 177
MntGoldProds 213
NumDealsPurchases 15
NumwWebPurchases 15
NumCatalogPurchases 14
NumStorePurchases 14
NumWebVisitsMonth 16
Response 2
Complain 2

dtype: int64

e We can drop the column - ID as itis unique for each customer and will not add value to the model.

# Dropping column - ID
data.drop(columns=["ID"], inplace=True)

Summary of the data

data.describe().T

count mean std min 25% 50% 75% max
Year_Birth 2240.0 1968.805804 11.984069 1893.0 1959.00 1970.0 1977.00 1996.0
Income 2216.0 52247.251354 25173.076661 1730.0 35303.00 51381.5 68522.00 666666.0

Kidhome 2240.0 0.444196 0.538398 0.0 0.00 0.0 1.00 2.0
Teenhome 2240.0 0.506250 0.544538 0.0 0.00 0.0 1.00 2.0
Recency 2240.0 49.109375 28.962453 0.0 24.00 49.0 74.00 99.0

MntWines 2240.0 303.935714 336.597393 0.0 23.75 173.5 504.25 1493.0
MntFruits 2240.0 26.302232 39.773434 0.0 1.00 8.0 33.00 199.0
MntMeatProducts 2240.0 166.950000 225.715373 0.0 16.00 67.0 232.00 1725.0

MntFishProducts 2240.0 37.525446 54.628979 0.0 3.00 12.0 50.00 259.0
MntSweetProducts 2240.0 27.062946 41.280498 0.0 1.00 8.0 33.00 263.0
MntGoldProds 2240.0 44.021875 52.167439 0.0 9.00 24.0 56.00 362.0
NumbDealsPurchases 2240.0 2.325000 1.932238 0.0 1.00 2.0 3.00 15.0
NumWebPurchases 2240.0 4.084821 2.778714 0.0 2.00 4.0 6.00 27.0
NumcCatalogPurchases 2240.0 2.662054 2.923101 0.0 0.00 2.0 4.00 28.0
NumStorePurchases 2240.0 5.790179 3.250958 0.0 3.00 5.0 8.00 13.0
NumWebVisitsMonth  2240.0 5.316518 2.426645 0.0 3.00 6.0 7.00 20.0
Response 2240.0 0.149107 0.356274 0.0 0.00 0.0 0.00 1.0

Complain 2240.0 0.009375 0.096391 0.0 0.00 0.0 0.00 1.0

e Year Birth has alarge range of values i.e. 1893 to 1996.

e Columns - MntFruits, MntWines, MntMeatProducts, MntFishProducts, MntSweetProducts might have outliers on the
right end as there is a large difference between 75th percentile and maximum values.

e Recency has an approx equal mean and median which is equal to 49.

e Highest mean amount spent in the last two years is on wines (approx 304), followed by meat products (approx 167).

e The distribution of classes in the Response variable is imbalanced as most of the values are 0.

Data Preprocessing

Adding age of the customers to the data using given birth years



# To calculate age we'll subtract the year 2016 because variables account for the last 2 years

# and we have customers registered till 2014 only

# We need to convert strings values to dates first to use subtraction

data["Age"] = 2016 - pd.to datetime(data["Year Birth"], format="%Y").apply(

lambda x: x.year

)

data["Age"].sort values()

562 20
1824 20
697 21
1468 21
964 21
1740 75
2171 76
2233 116
827 117
513 123

Name: Age, Length: 2240, dtype: int64

e We can see that there are 3 observations with ages greater than 100 i.e. 116, 117 and 123 which is highly unlikely to be true.
e We can cap the value for age variables to the next highest value i.e. 76.

# Capping age variable
data["Age"].clip(upper=76, inplace=True)

Using Dt_Customer to add features to the data

# The feature Dt Customer represents dates of the customer’s enrollment with the company.

# Let's convert this to DateTime format

data["Dt Customer"] = pd.to datetime(data["Dt Customer"])

# Extracting registration year from the date

data["Reg year"] = data["Dt Customer"].apply(lambda x: x.year)

# Extracting registration quarter from the date

data["Reg quarter"] = data["Dt Customer"].apply(lambda x: x.quarter)

# Extracting registration month from the date

data["Reg month"] = data["Dt Customer"].apply(lambda x: x.month)

# Extracting registration week from the date

data["Reg week"] = data["Dt Customer"].apply(lambda x: x.day // 7)

data.head()

Year_Birth Education Marital_Status Income Kidhome Teenhome

0 1970 Graduation Divorced 84835.0 0 0
1 1961 Graduation Single 57091.0 0 0
2 1958 Graduation Married 67267.0 0 1
3 1967 Graduation Together 32474.0 1 1
4 1989 Graduation Single 21474.0 1 0

5 rows x 26 columns
q

Dt_Customer
2014-06-16
2014-06-15
2014-05-13
2014-11-05

2014-08-04

Recency

0

o o o o

Let's check the count of each unique category in each of the categorical variables.

# Making a list of all categorical variables
cat col = [
"Education",
"Marital Status",
"Kidhome",
"Teenhome",
"Complain",
"Response",
"Reg year",
"Reg quarter",
"Reg_month",

MntWines
189

464

134

10

MntFruits

NumCatalogPurchases

4

3
2
0



"Reg week",

]

# Printing number of count of each unique value in each column
for column in cat col:

print(data[column].value counts())

print("-" * 40)

Graduation 1127

PhD 486
Master 370
2n Cycle 203
Basic 54

Name: Education, dtype: int64

Married 864
Together 580
Single 480
Divorced 232
Widow 77
Alone 3
YOLO 2
Absurd 2

Name: Marital Status, dtype: int64

0
1
2 48
N

1 21

2013 1189
2014 557
2012 494

141

265

e In education, 2n cycle and Master means the same thing. We can combine these two categories.

e There are many categories in marital status. We can combine the categories 'Alone’, 'Absurd' and 'YOLO' with 'Single' and 'Together
categories with 'Married'.

e There are only 21 customers who complained in the last two years.



e We have 1906 observations for the 0 class but only 334 observations for class 1.

e There are only three years in the customer registration data.

# Replacing 2n Cycle with Master

data["Education"] = data["Education"].replace("2n Cycle", "Master")

# Replacing YOLO, Alone, Absurd with single and Together with Married

data["Marital Status"] = data["Marital Status"].replace(
["YOLO", "Alone", "Absurd"], "Single"
)

data["Marital Status"] = data["Marital Status"].replace(["Together"], "Married")

Imputing missing values in income column

# number of missing values in each column
data.isnull().sum()

Year Birth
Education

Marital Status
Income 2
Kidhome

Teenhome

Dt Customer
Recency

MntWines
MntFruits
MntMeatProducts
MntFishProducts
MntSweetProducts
MntGoldProds
NumDealsPurchases
NumwWebPurchases
NumCatalogPurchases
NumStorePurchases
NumWebVisitsMonth
Response

Complain

Age

Reg year

Reg quarter
Reg_month
Reg_week

dtype: int64

[cNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoR SN o NoNo)

# Percentage of missing values in income column

round(data.isna().sum() / data.isna().count() * 100, 2)["Income"]

1.07

We can add a column - total amount spent by each customer in the last 2 years

data["Total Amount Spent"] = datal

[
"MntWines",
"MntFruits",
"MntMeatProducts",
"MntFishProducts",
"MntSweetProducts",
"MntGoldProds",

]

].sum(axis=1)

EDA

Univariate

# While doing uni-variate analysis of numerical variables we
# and dispersion.

want to study their central tendency
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# Let us write a function that will help us create a boxplot and histogram for any input numerical
# variable.

# This function takes the numerical column as the input and returns the boxplots

# and histograms for the variable.

# Let us see if this helps us write faster and cleaner code.

def histogram boxplot(feature, figsize=(15, 10), bins=None):

"""Boxplot and histogram combined
feature: 1-d feature array
figsize: size of fig (default (9,8))
bins: number of bins (default None / auto)
f2, (ax box2, ax hist2) = plt.subplots(
nrows=2, # Number of rows of the subplot grid= 2
sharex=True, # x-axis will be shared among all subplots
gridspec kw={"height ratios": (0.25, 0.75)},
figsize=figsize,
) # creating the 2 subplots
sns.boxplot (
feature, ax=ax box2, showmeans=True, color="violet"
) # boxplot will be created and a star will indicate the mean value of the column
sns.distplot(
feature, kde=F, ax=ax hist2, bins=bins, palette="winter"
) if bins else sns.distplot(
feature, kde=False, ax=ax hist2
) # For histogram
ax_hist2.axvline(
np.mean(feature), color="green", linestyle="--"
) # Add mean to the histogram
ax_hist2.axvline(
np.median(feature), color="black", linestyle="-"
) # Add median to the histogram

# Observations on Customer age
histogram boxplot(data["Age"])
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e As per the boxplot, there are no outliers in the 'Age' variable
e Age has a fairly normal distribution with approx equal mean and median

# observations on Income
histogram boxplot(data["Income"])
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e We can see there are some outliers in the income variable.
e Some variation is always expected in real-world scenarios for the income variable but we can remove the data point on the extreme right
end of the boxplot as it can be a data entry error.

# Dropping observaion with income greater than 20000. There is just 1 such observation
data.drop(index=data[data.Income > 200000].index, inplace=True)

# observations on Recency
histogram boxplot(data["Recency"])
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e There are no outliers in the 'Recency’ variable
e The distribution is fairly symmetric and uniformly distributed.

# observations on MntWines
histogram boxplot(data["MntWines"])
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e The distribution for the amount spent on wines is highly skewed to the right

e As the median of the distribution is less than 200, more than 50% of customers have spent less than 200 on wines.

e There are some outliers on the right end of the boxplot but we will not treat them as some variation is always expected in real-world
scenarios for variables like amount spent.

# observations on MntFruits
histogram boxplot(data["MntFruits"])
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e The distribution for the amount spent on fruits is highly skewed to the right.

e As the median of the distribution is less than 20, more than 50% of customers have spent less than 20 on fruits.

e There are some outliers on the right end of the boxplot but we will not treat them as some variation is always expected in real-world
scenarios for variables like amount spent.

# observations on MntMeatProducts
histogram boxplot(data["MntMeatProducts"])
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e The distribution for the amount spent on meat products is highly skewed to the right.

e We can see that there are some extreme observations in the variable that can be considered as outliers as they very far from the rest of
the values.

e We can cap the value of the variable to the next highest value.

# Checking 5 largest values of amount spend on meat products
data.MntMeatProducts.nlargest(10)

325 1725
961 1725
497 1622
1213 1607
2204 1582
1921 984
53 981
994 974
2021 968
1338 961

Name: MntMeatProducts, dtype: int64



In [283. | 4 Capping values for amount spent on meat products at next highest value i.e. 984

data["MntMeatProducts"].clip(upper=984, inplace=True)

L 1209w observations on MntFishProducts
histogram boxplot(data["MntFishProducts"])
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e The distribution for the amount spent on fish products is right-skewed
e There are some outliers on the right end in the boxplot but we will not treat them as this represents a real market trend that some
customers spend more on fish products than others.
In [2@5.

# observations on MntSweetProducts
histogram boxplot(data["MntSweetProducts"])
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e The distribution for the amount spent on sweet products is right-skewed
e There is one observation to the right extreme which can be considered as an outlier.
e We will not remove all such data points as they represent real market trends but we can cap some of the extreme values.

200 # Capping values for amount spent on sweet products at 198

data["MntSweetProducts"].clip(upper=198, inplace=True)

# observations on MntGoldProds
histogram boxplot(data["MntGoldProds"])
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e There are some outliers in the amount spent on gold products. We will not remove all such data points as they represent real market
trends but we can cap some of the extreme values.

# Capping values for amount spent on gold products at 250
data["MntGoldProds"].clip(upper=250, inplace=True)

113~ # observations on NumDealsPurchases

histogram boxplot(data["NumDealsPurchases"])

MumDealsPurchases
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e Majority of the customers have 2 or less than 2 deal purchases.
¢ We can see that there some extreme observations in the variable. This represents the real market trend.
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L UL g observations on NumWebPurchases

histogram boxplot(data["NumWebPurchases"])
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e The median of the distribution is 4 i.e. 50% of customers have 4 or less than 4 web purchases.
e We can see that there are some extreme observations in the variable. We can cap these values to the next highest number of
purchases.

# Capping values for number of web purchases at 11
data[ "NumWebPurchases"].clip(upper=11, inplace=True)
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# observations on NumCatalogPurchases
histogram boxplot(data["NumCatalogPurchases"])
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e The most number of observations are for O catalog purchases.
e The median of the distribution is 2 i.e. 50% of customers have 2 or less than 2 catalog purchases.
e We can see that there is two extreme observation in the variable. We can cap these values to the next highest number of purchases.

# Capping values for number of catalog purchases at 11
data["NumCatalogPurchases"].clip(upper=11, inplace=True)

# observations on NumStorePurchases
histogram boxplot(data["NumStorePurchases"])
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e There are very few observations with less than 2 purchases from the store
e Most of the customers have 4 or 5 purchases from the store

e There are no outliers in this variable

# observations on NumWebVisitsMonth
histogram boxplot(datal["NumWebVisitsMonth"])
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e The distribution for the number of visits in a month is skewed and has some outliers at the right end.

o We will not treat this as this represents a general market trend

def perc _on bar(feature):

plot

feature: categorical feature

the function won't work if a column is passed in the hue parameter
# Creating a countplot for the feature
sns.set(rc={"figure.figsize": (10, 5)})

ax = sns.countplot(x=feature, data=data)

total = len(feature) # length of the column
for p in ax.patches:
percentage = "{:.1f}%".format(

100 * p.get height() / total
# percentage of each class of the category

p.get_x() + p.get_width() / 2 - 0.1 # width of the plot

p.get y() + p.get height() # hieght of the plot
x.annotate(percentage, (x, y), size=14) # annotate the percantage

plt.show() # show the plot

# observations on Marital Status
perc_on bar(data["Marital Status"])
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¢ Majority of the customers are married comprising approx 64% of total customers.

# observations on Education
perc_on _bar(data["Education"])
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e Education of approx 50% of customers is at graduation level.
o Very few observations i.e. ~2% for customers with basic level education

# observations on Kidhome
perc on_bar(data["Kidhome"])
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e ~40% of customers have 1 kid and ~58% of customers have no kids at home
e There are very few customers, approx 2%, with a number of kids greater than 1



# observations on Teenhome
perc_on_bar(data["Teenhome"])
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e Majority of the customers i.e. ~52% customers have no teen at home
e There are very few customers, only ~2%, with a number of teens greater than 1

# observations on Complain
perc _on bar(data["Complain"])

2000

1500

count

1000

500

0.9%

Complain

e Approx 99% of customers had no complaint in the last 2 years. This might be because the company provides good services or might be
due to the lack of feedback options for customers.

# observations on Registration year
perc_on_bar(data["Reg year"])
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e The number of customers registered is highest in the year 2013.

L # observations on Registration quarter

perc on_bar(data["Reg quarter"])

)
I I
1 2

Reg_quarter

600

500

count
=
=

200

100

0

e There is no significant difference in the number of registrations for each quarter.

e The number of registrations is slightly higher for the 1st and the 4th quarter. This can be due to the festival season in these months.
e Let's explore this further by plotting the count of registration per month.

# observations on Registration month
perc_on_bar(data["Reg month"])
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e This shows that the highest number of registration is in the months of winters i.e. March, August, October & December
e There is approx 3% reduction in the number of registrations from June to July.

# observations on Registration week
perc on_bar(data["Reg week"])
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e This shows that the number of registrations declines at the end of the month i.e. in the last two weeks.
e This can be because most people get salaries on the last day or first day of the month.

# observations on Response
perc_on _bar(data["Response"])
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e Approx 85% customer's response was NO in the last campaign.
e This shows that the distribution of classes in the target variable is imbalanced. We have only ~15% observations where the response is
YES.

Bivariate Analysis

sns.pairplot(data, hue="Response")

<seaborn.axisgrid.PairGrid at 0x167f26990>
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There are overlaps i.e. no clear distinction in the distribution of variables for people who have taken the product and did not take the

product.
o Let's explore this further with the help of other plots.

sns.set(rc={"figure.figsize": (10, 7)})
sns.boxplot(y="Total Amount Spent", x="Marital Status", data=data, orient="vertical")

<AxesSubplot:xlabel='Marital Status', ylabel='Total Amount Spent'>
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e We can see that the total amount spent is higher for widowed customers.
¢ No significant difference in the amount spent by single, married or divorced customers.

sns.boxplot(y="Total Amount Spent", x="Education", data=data, orient="vertical")
<AxesSubplot:xlabel="'Education', ylabel='Total Amount Spent'>
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o As expected, the amount spent increases with the increase in education level.
e Customers with graduate-level education spend slightly more than customers with master-level education.

pd.pivot table(
data=data,
index=["Reg year", "Reg month"],
values="Total_Amount_Spent",
aggfunc=np.sum,

) .plot(kind="1ine", marker="0", linewidth=2)

<AxesSubplot:xlabel='Reg year,Reg month'>
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e The plot clearly shows that the total amount spent has declined over the years.
e The plot shows the highest increase in the amount spent from August to September 2012.

sns.regplot(y=data.Total Amount Spent, x=data.Income)

<AxesSubplot:xlabel="'Income', ylabel='Total Amount Spent'>
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e We can see that income and the total amount spent have a positive correlation.
e The total amount spent is not much different for customers with income in the range of 20K to 60K but the difference is significant for

customers in the range of 60K to 100K.

cols = datal
[
"MntWines",
"MntGoldProds",
"MntMeatProducts",
"MntFruits",
"MntFishProducts",
"MntSweetProducts",
1
].columns.tolist()
plt.figure(figsize=(10, 10))

for i, variable in enumerate(cols):
plt.subplot(3, 2, i + 1)
sns.boxplot(data["Response"], data[variable])
plt.tight layout()
plt.title(variable)

plt.show()
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e Each plot shows that customer spending more on any product is more likely to take the offer.



cols = data[["Recency", "Age", "Income", "Total Amount Spent"]].columns.tolist()
plt.figure(figsize=(10, 10))

for i, variable in enumerate(cols):
plt.subplot(3, 2, i + 1)
sns.boxplot(data["Response"], data[variable])
plt.tight layout()
plt.title(variable)

plt.show()
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e Customers with lower recency i.e. less number of days since the last purchase, are more likely to take the offer.
e Response does not depend much on age.

e Customers with higher income are more likely to take the offer.

e Customers who spent more in the last 2 years are more likely to take the offer.

### Function to plot stacked bar charts for categorical columns
def stacked plot(x):
sns.set(palette="nipy spectral")
tabl = pd.crosstab(x, data["Response"], margins=True)
print(tabl)
print("-" * 120)
tab = pd.crosstab(x, data["Response"], normalize="index")
tab.plot(kind="bar", stacked=True, figsize=(10, 5))
plt.legend(loc="lower left", frameon=False)
plt.legend(loc="upper left", bbox to anchor=(1, 1))
plt.show()

stacked plot(data["Education"])
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e We can see a clear trend here that customers with higher education are more likely to take the offer.

stacked plot(data["Marital Status"])

Response 0 1 All

Marital Status

Divorced 184 48 232

Married 1285 158 1443

Single 378 109 487

Widow 58 19 77

All 1905 334 2239
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o We saw earlier that number of married customers is much more than single or divorced but divorced/widow customers are more likely to
take the offer.

e Single customers are more likely to take the offer than married customers.

stacked plot(data["Kidhome"])
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e We can see that the number of kids increases, chances of customers taking the offer decreases.
e Customers with no kids at home are more likely to take the offer which can be expected as this includes single customers as well.

stacked plot(data["Teenhome"])
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e Customers with no teens at home are most likely to take the offer.

e Customers with two teens are more likely to take the offer than customers with 1 teenager

stacked plot(data["Reg year"])
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e Number of customers taking the offer is decreasing each subsequent year.
e Let's explore this further for month-wise distribution for each of the year.

sns.set(rc={"figure.figsize": (15, 15)})
sns.heatmap (

data.corr(),

annot=True,

linewidths=0.5,

center=0,

cbar=False,

cmap="Y1lGnBu",

fmt="0.2f",
)

plt.show()
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e As expected, age and year of birth have a high negative correlation. We can drop one of them.

e Registration month, quarter and year columns are highly correlated which can be expected as we extracted these columns from the
same column.

e We can drop one of the columns in a quarter or month as they are almost perfectly correlated.

o Total amount spent is correlated with variables they are associated with. We can drop this column.



Data Preparation

education = {'Basic':1, 'Graduation':2, 'Master':3, 'PhD':4}

data[ 'Education']=datal'Education'].map(education)

marital status = {'Married':1, 'Single':2, 'Divorced':3, 'Widow':4}
data[ 'Marital Status']=data['Marital Status'].map(marital_status)

Split the data into train and test sets
Separating target variable and other variables

data.drop(columns="Response")
data["Response"]

< X #*

# Dropping birth year and Dt Customer columns
X.drop(
columns=[
"Year Birth",
"Dt_Customer",
"Reg quarter",
“Total Amount Spent",

e
inplace=True,

# Splitting the data into train and test sets

X train, X test, y train, y test = train test split(
X, Y, test size=0.30, random state=1, stratify=Y

)

print(X train.shape, X test.shape)

(1567, 22) (672, 22)

Missing-Value Treatment

e We will use KNN imputer to impute missing values.

e KNNImputer : Each sample's missing values are imputed by looking at the n_neighbors nearest neighbors found in the training set.
Default value for n_neighbors=5.

e KNN imputer replaces missing values using the average of k nearest non-missing feature values.

e Nearest points are found based on euclidean distance.

imputer = KNNImputer(n neighbors=5)

#Fit and transform the train data
X train=pd.DataFrame(imputer.fit transform(X train),columns=X train.columns)

#Transform the test data
X test=pd.DataFrame(imputer.fit transform(X test),columns=X test.columns)

#Checking that no column has missing values in train or test sets
print(X train.isna().sum())

print('-"'*30)

print(X test.isna().sum())
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¢ All missing values have been treated.
e Let's inverse map the encoded values.

## Function to inverse the encoding

def inverse mapping(x,y):
inv dict = {v: k for k, v in x.items()}
X train[y] = np.round(X train[y]).map(inv dict).astype('category")
X test[y] = np.round(X test[y]).map(inv_dict).astype('category"')

inverse mapping(education, 'Education')
inverse mapping(marital status, 'Marital Status')

e Checking inverse mapped values/categories.

cols = X train.select dtypes(include=['object"', 'category'])
for i in cols.columns:

print(X train[i].value counts())

print('*'*30)

Graduation 793

Master 420
PhD 316
Basic 38

Name: Education, dtype: int64
Sk 3k >k ok 3k sk Sk >k sk sk >k ok Sk >k ok Sk >k ok sk ok ok sk sk ok sk ok ok kok sk

Married 993
Single 346
Divorced 168
Widow 60

Name: Marital Status, dtype: int64
Sk >k 3k ok >k ok Sk >k ok Sk >k ok Sk 3k ok Sk >k ok sk sk ok Sk sk ok sk ok ok okok ok

cols = X test.select dtypes(include=['object', 'category'])
for i in cols.columns:

print(X test[i].value counts())

print('*'*30)

Graduation 333

PhD 170
Master 153
Basic 16

Name: Education, dtype: int64



>k 3k 3k 3k 3k Sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok K >k >k >k >k >k >k >k >k >k

Married 450
Single 141
Divorced 64
Widow 17

Name: Marital Status, dtype: int64

3k 3k 3k 3k 3k 3k Sk ok k ok ok ok ok ok ok ok ok K K ok K K K >k >k >k kK k >k

e Inverse mapping returned original labels
Encoding categorical varaibles

X train=pd.get dummies(X train,drop first=True)
X test=pd.get dummies (X test,drop first=True)
print(X train.shape, X test.shape)

(1567, 26) (672, 26)

o After encoding there are 26 columns.

Building the model

Model evaluation criterion:

Model can make wrong predictions as:

1. Predicting a customer will buy the product and the customer doesn't buy - Loss of resources
2. Predicting a customer will not buy the product and the customer buys - Loss of opportunity

Which case is more important?

e Predicting that customer will not buy the product but he buys i.e. losing on a potential source of income for the company because that
customer will not be targeted by the marketing team when he should be targeted.

How to reduce this loss i.e need to reduce False Negatives?

o Company wants Recall to be maximized, greater the Recall lesser the chances of false negatives.

Let's start by building different models using KFold and cross_val_score with pipelines and tune the best model using
GridSearchCV and RandomizedSearchCV

e Stratified K-Folds cross-validation provides dataset indices to split data into train/validation sets. Split dataset into k
consecutive folds (without shuffling by default) keeping the distribution of both classes in each fold the same as the target variable. Each
fold is then used once as validation while the k - 1 remaining folds form the training set.

models = [] # Empty list to store all the models

# Appending pipelines for each model into the list
models.append (
(
"LR",
Pipeline(
steps=[
("scaler", StandardScaler()),
("log reg", LogisticRegression(random state=1)),

)
)
)
models.append (
(
"RF",
Pipeline(
steps=[
("scaler", StandardScaler()),
("random forest", RandomForestClassifier(random state=1)),



)
models.append (
(
"GBM",
Pipeline(
steps=[
("scaler", StandardScaler()),
("gradient boosting", GradientBoostingClassifier(random state=1)),

)
)
)
models.append(
(
"ADB",
Pipeline(
steps=[
("scaler", StandardScaler()),
("adaboost", AdaBoostClassifier(random state=1)),

)5
)
)
models.append(
(
"XGB",
Pipeline(
steps=[
("scaler", StandardScaler()),
("xgboost", XGBClassifier(random state=1,eval metric='logloss')),

)5
)
)
models.append(
(
"DTREE",
Pipeline(
steps=[
("scaler", StandardScaler()),
("decision tree", DecisionTreeClassifier(random state=1)),

)

results = [] # Empty list to store all model's CV scores
names = []1 # Empty list to store name of the models

# loop through all models to get the mean cross validated score
for name, model in models:
scoring = "recall"
kfold = StratifiedKFold(
n splits=5, shuffle=True, random state=1
) # Setting number of splits equal to 5
cv_result = cross val score(
estimator=model, X=X train, y=y train, scoring=scoring, cv=kfold
)
results.append(cv_result)
names.append (name)
print("{}: {}".format(name, cv result.mean() * 100))

LR: 30.814061054579096
RF: 19.22294172062905
GBM: 30.74005550416281
ADB: 37.6040703052729
XGB: 29.92599444958372
DTREE: 38.880666049953746

models = [] # Empty list to store all the models

# Appending pipelines for each model into the list
models.append (
(
"LR",
Pipeline(
steps=[
("scaler", StandardScaler()),
("log reg", LogisticRegression(random state=1)),

Do
)
)
models.append (
(



"RF",
Pipeline(
steps=[
("scaler", StandardScaler()),
("random forest", RandomForestClassifier(random state=1)),

)
)
)
models.append (
(
"GBM",
Pipeline(
steps=[
("scaler", StandardScaler()),
("gradient boosting", GradientBoostingClassifier(random state=1)),

)5
)
)
models.append (
(
"ADB",
Pipeline(
steps=[
("scaler", StandardScaler()),
("adaboost", AdaBoostClassifier(random state=1)),

)
)
)
models.append(
(
"XGB",
Pipeline(
steps=[
("scaler", StandardScaler()),
("xgboost", XGBClassifier(random state=1,eval metric='logloss')),

)
)
)
models.append (
(
"DTREE",
Pipeline(
steps=[
("scaler", StandardScaler()),
("decision tree", DecisionTreeClassifier(random state=1)),

)

results = [] # Empty list to store all model's CV scores
names = []1 # Empty list to store name of the models

# loop through all models to get the mean cross validated score
for name, model in models:
scoring = "recall"
kfold = StratifiedKFold(
n splits=5, shuffle=True, random state=1
) # Setting number of splits equal to 5
cv_result = cross val score(
estimator=model, X=X train, y=y train, scoring=scoring, cv=kfold
)
results.append(cv_result)
names .append (name)
print("{}: {}".format(name, cv_result.mean() * 100))

LR: 30.814061054579096
RF: 19.22294172062905
GBM: 30.74005550416281
ADB: 37.6040703052729
XGB: 29.92599444958372
DTREE: 38.880666049953746

# Plotting boxplots for CV scores of all models defined above
fig = plt.figure(figsize=(10, 7))

fig.suptitle("Algorithm Comparison")
ax = fig.add subplot(111)

plt.boxplot(results)
ax.set xticklabels(names)



plt.show()
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e We can see that AdaBoost is giving the highest cross-validated recall followed by XGBoost

e The boxplot shows that the performance of both the models is consistent with just one outlier for AdaBoost.

e We will tune both models - AdaBoost and XGBoost and see if the performance improves.

Hyperparameter Tuning

We will use pipelines with StandardScaler and AdaBoost model and tune the model using GridSearchCV and
RandomizedSearchCV. We will also compare the performance and time taken by these two methods - grid search and randomized

search.

We can also use the make_pipeline function instead of Pipeline to create a pipeline.

make_pipeline : This is a shorthand for the Pipeline constructor; it does not require and does not permit, naming the estimators.

Instead, their names will be set to the lowercase of their types automatically.

First, let's create two functions to calculate different metrics and confusion matrix so that we don't have to use the same code

repeatedly for each model.

## Function to calculate different metric scores of the model - Accuracy, Recall and Precision
def get metrics score(model, flag=True):

model: classifier to predict values of X

# defining an empty list to store train and test results
score list = []

pred train = model.predict(X train)
pred test = model.predict(X test)

train acc = model.score(X train, y train)
test acc = model.score(X test, y test)

train recall = metrics.recall score(y train, pred train)
test recall = metrics.recall score(y test, pred test)

train precision = metrics.precision score(y train, pred train)
test precision = metrics.precision score(y test, pred test)

score list.extend(
(
train acc,
test acc,
train recall,
test recall,



train precision,
test _precision,

)

# If the flag is set to True then only the following print statements will be dispayed. The default value is
if flag == True:

print("Accuracy on training set : ", model.score(X train, y train))
print("Accuracy on test set : ", model.score(X test, y test))
print("Recall on training set : ", metrics.recall score(y train, pred train))
print("Recall on test set : ", metrics.recall score(y test, pred test))
print(

"Precision on training set : ", metrics.precision score(y train, pred train)
)
print("Precision on test set : ", metrics.precision score(y test, pred test))

return score list # returning the list with train and test scores

## Function to create confusion matrix

def make confusion matrix(model, y actual, labels=[1, 0]):
model: classifier to predict values of X
y actual: ground truth

y predict = model.predict(X test)
cm = metrics.confusion matrix(y actual, y predict, labels=[0, 1])
df cm = pd.DataFrame(

cm,
index=[i for i in ["Actual - No", "Actual - Yes"]],
columns=[i for i in ["Predicted - No", "Predicted - Yes"]],

)

group counts = ["{0:0.0f}".format(value) for value in cm.flatten()]

group percentages = ["{0:.2%}".format(value) for value in cm.flatten() / np.sum(cm)]
labels = [f"{v1}\n{v2}" for v1, v2 in zip(group counts, group percentages)]

labels = np.asarray(labels).reshape(2, 2)

plt.figure(figsize=(10, 7))

sns.heatmap(df cm, annot=labels, fmt="")

plt.ylabel("True label")

plt.xlabel("Predicted label")

AdaBoost

GridSearchCV

%%time

# Creating pipeline
pipe = make pipeline(StandardScaler(), AdaBoostClassifier(random state=1))

# Parameter grid to pass in GridSearchCV
param grid = {
"adaboostclassifier n estimators": np.arange(10, 110, 10),
"adaboostclassifier learning rate": [0.1, 0.01, 0.2, 0.05, 1],
"adaboostclassifier base estimator": [
DecisionTreeClassifier(max depth=1, random state=1),
DecisionTreeClassifier(max depth=2, random state=1),
DecisionTreeClassifier(max depth=3, random state=1),
I,
}

# Type of scoring used to compare parameter combinations
scorer = metrics.make scorer(metrics.recall score)

# Calling GridSearchCV
grid cv = GridSearchCV(estimator=pipe, param grid=param grid, scoring=scorer, cv=5, n jobs = -1)

# Fitting parameters in GridSeachCV
grid cv.fit(X train, y train)

print(
"Best Parameters:{} \nScore: {}".format(grid cv.best params , grid cv.best score )

)

Best Parameters:{'adaboostclassifier base estimator': DecisionTreeClassifier(max depth=2, random state=1l), 'adab
oostclassifier learning rate': 1, 'adaboostclassifier n estimators': 100}

Score: 0.4830712303422756

CPU times: user 6.04 s, sys: 635 ms, total: 6.68 s

Wall time: 51.6 s



%%time

# Creating pipeline
pipe = make pipeline(StandardScaler(), AdaBoostClassifier(random state=1))

# Parameter grid to pass in GridSearchCV
param grid = {
"adaboostclassifier n estimators": np.arange(10, 110, 10),
"adaboostclassifier learning rate": [0.1, 0.01, 0.2, 0.05, 1],
"adaboostclassifier base estimator": [
DecisionTreeClassifier(max depth=1, random state=1),
DecisionTreeClassifier(max depth=2, random state=1),
DecisionTreeClassifier(max depth=3, random state=1),
I,
}

# Type of scoring used to compare parameter combinations
scorer = metrics.make scorer(metrics.recall score)

# Calling GridSearchcV
grid cv = GridSearchCV(estimator=pipe, param grid=param grid, scoring=scorer, cv=5, n jobs = -1)

# Fitting parameters in GridSeachCV
grid_cv.fit(X_train, y train)

print(
"Best Parameters:{} \nScore: {}".format(grid cv.best params , grid cv.best score )

)

Best Parameters:{'adaboostclassifier base estimator': DecisionTreeClassifier(max depth=2, random state=1),

oostclassifier learning rate': 1, 'adaboostclassifier n estimators': 100}
Score: 0.4830712303422756

CPU times: user 5.97 s, sys: 638 ms, total: 6.61 s

Wall time: 58.5 s

# Creating new pipeline with best parameters
abc tunedl = make pipeline(
StandardScaler(),
AdaBoostClassifier(
base estimator=DecisionTreeClassifier(max depth=2, random state=1),
n_estimators=100,
learning rate=1,
random state=1,
)
)

# Fit the model on training data
abc_tunedl.fit(X train, y train)

Pipeline(steps=[('standardscaler', StandardScaler()),
('adaboostclassifier',
AdaBoostClassifier(base estimator=DecisionTreeClassifier(max _depth=2,
random_state=1),
learning rate=1, n_estimators=100,
random state=1))1])

# Calculating different metrics
get metrics score(abc tunedl)

# Creating confusion matrix
make confusion matrix(abc tunedl, y test)

Accuracy on training set : 0.9929802169751116
Accuracy on test set : 0.8586309523809523
Recall on training set : 0.9786324786324786
Recall on test set : 0.44

Precision on training set : 0.9744680851063829
Precision on test set : 0.5301204819277109

=500

533
79.32%
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El

'adab
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e The test recall has increased by ~7% as compared to cross-validated recall
e The tuned Adaboost model is slightly overfitting the training data
e The test recall is still less than 50% i.e. the model is not good at identifying potential customers who would take the offer.

RandomizedSearchCV

%%time

# Creating pipeline
pipe = make pipeline(StandardScaler(), AdaBoostClassifier(random state=1))

# Parameter grid to pass in RandomizedSearchCV
param grid = {
"adaboostclassifier n estimators": np.arange(10, 110, 10),
"adaboostclassifier learning rate": [0.1, 0.01, 0.2, 0.05, 1],
"adaboostclassifier base estimator": [
DecisionTreeClassifier(max depth=1, random state=1),
DecisionTreeClassifier(max depth=2, random state=1),
DecisionTreeClassifier(max depth=3, random state=1),
P
}

# Type of scoring used to compare parameter combinations
scorer = metrics.make scorer(metrics.recall score)

#Calling RandomizedSearchCV
abc tuned2 = RandomizedSearchCV(estimator=pipe, param distributions=param grid, n iter=50, scoring=scorer, cv=5,

#Fitting parameters in RandomizedSearchCV
abc_tuned2.fit (X train,y train)

print("Best parameters are {} with CV score={}:" .format(abc tuned2.best params ,abc tuned2.best score ))

Best parameters are {'adaboostclassifier n estimators': 100, 'adaboostclassifier 1learning rate': 1, ‘'adaboostcl
assifier base estimator': DecisionTreeClassifier(max depth=2, random state=1)} with CV score=0.4830712303422756:
CPU times: user 59 s, sys: 459 ms, total: 59.5 s

Wall time: 1min

%%time

# Creating pipeline
pipe = make pipeline(StandardScaler(), AdaBoostClassifier(random state=1))

# Parameter grid to pass in RandomizedSearchCV
param grid = {
"adaboostclassifier n estimators": np.arange(10, 110, 10),
"adaboostclassifier learning rate": [0.1, 0.01, 0.2, 0.05, 1],
"adaboostclassifier base estimator": [
DecisionTreeClassifier(max depth=1, random state=1),
DecisionTreeClassifier(max depth=2, random state=1),
DecisionTreeClassifier(max depth=3, random state=1),
15
}
# Type of scoring used to compare parameter combinations
scorer = metrics.make scorer(metrics.recall score)

#Calling RandomizedSearchCV
abc tuned2 = RandomizedSearchCV(estimator=pipe, param distributions=param grid, n iter=50, scoring=scorer, cv=5,

#Fitting parameters in RandomizedSearchCV
abc tuned2.fit(X train,y train)

print("Best parameters are {} with CV score={}:" .format(abc tuned2.best params ,abc tuned2.best score ))



Best parameters are {'adaboostclassifier n estimators': 100, 'adaboostclassifier learning rate': 1, 'adaboostcl
assifier base estimator': DecisionTreeClassifier(max depth=2, random state=1)} with CV score=0.4830712303422756:
CPU times: user 2.17 s, sys: 174 ms, total: 2.34 s

Wall time: 18.9 s

# Creating new pipeline with best parameters
abc tuned2 = make pipeline(
StandardScaler(),
AdaBoostClassifier(
base estimator=DecisionTreeClassifier(max depth=2, random state=1),
n_estimators=100,
learning rate=1,
random state=1,
),
)

# Fit the model on training data
abc tuned2.fit(X train, y train)

Pipeline(steps=[('standardscaler', StandardScaler()),
('adaboostclassifier',
AdaBoostClassifier(base estimator=DecisionTreeClassifier(max depth=2,
random state=1),
learning_rate=1, n_estimators=100,
random state=1))])

# Calculating different metrics
get metrics score(abc tuned2)

# Creating confusion matrix
make confusion matrix(abc tuned2, y test)

Accuracy on training set : 0.9929802169751116
Accuracy on test set : 0.8586309523809523
Recall on training set : 0.9786324786324786
Recall on test set : 0.44

Precision on training set : 0.9744680851063829
Precision on test set : 0.5301204819277109
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e Grid search took a significantly longer time than random search. This difference would further increase as the number of parameters
increases but the parameters from random search are the same as compared grid search.
e This can happen by chance but it is not guaranteed to happen for each algorithm.

XGBoost

GridSearchCV



#Creating pipeline
pipe=make pipeline(StandardScaler(), XGBClassifier(random state=1,eval metric='logloss'))

#Parameter grid to pass in GridSearchCV

param_grid={'xgbclassifier n estimators':np.arange(50,300,50), 'xgbclassifier scale pos weight':[0,1,2,5,10],
'xgbclassifier learning rate':[0.01,0.1,0.2,0.05], 'xgbclassifier gamma':[0,1,3,5],
'xgbclassifier subsample':[0.7,0.8,0.9,1]}

# Type of scoring used to compare parameter combinations
scorer = metrics.make scorer(metrics.recall score)

#Calling GridSearchcV
grid cv = GridSearchCV(estimator=pipe, param grid=param grid, scoring=scorer, cv=5, n jobs = -1)

#Fitting parameters in GridSeachCV
grid_cv.fit(X_train,y train)

print("Best parameters are {} with CV score={}:" .format(grid cv.best params ,grid cv.best score ))

Best parameters are {'xgbclassifier gamma': 3, 'xgbclassifier Tlearning rate': 0.01, 'xgbclassifier n estimator
s': 150, 'xgbclassifier scale pos weight': 10, 'xgbclassifier subsample': 0.8} with CV score=0.8765032377428307

CPU times: user 59.6 s, sys: 5.28 s, total: 1min 4s
Wall time: 11lmin 47s

%%time

#Creating pipeline
pipe=make pipeline(StandardScaler(), XGBClassifier(random state=1,eval metric='logloss'))

#Parameter grid to pass in GridSearchCV

param_grid={'xgbclassifier n estimators':np.arange(50,300,50), 'xgbclassifier scale pos weight':[0,1,2,5,10],
'xgbclassifier learning rate':[0.01,0.1,0.2,0.05], 'xgbclassifier gamma':[0,1,3,5],
‘xgbclassifier subsample':[0.7,0.8,0.9,1]}

# Type of scoring used to compare parameter combinations
scorer = metrics.make scorer(metrics.recall score)

#Calling GridSearchcV
grid cv = GridSearchCV(estimator=pipe, param grid=param grid, scoring=scorer, cv=5, n jobs = -1)

#Fitting parameters in GridSeachCV
grid_cv.fit(X_train,y train)

print("Best parameters are {} with CV score={}:" .format(grid cv.best params ,grid cv.best score ))

Best parameters are {'xgbclassifier gamma': 3, 'xgbclassifier Tlearning rate': 0.01, 'xgbclassifier n estimator
s': 150, 'xgbclassifier scale pos weight': 10, 'xgbclassifier subsample': 0.8} with CV score=0.8765032377428307

CPU times: user 57.8 s, sys: 5.06 s, total: 1min 2s
Wall time: 10min 2s

# Creating new pipeline with best parameters
xgb tunedl = make pipeline(
StandardScaler(),
XGBClassifier(
random state=1,
n_estimators=150,
scale pos weight=10,
subsample=0.8,
learning rate=0.01,
gamma=3,
eval_metric='logloss"',
),
)

# Fit the model on training data
xgb_tunedl.fit(X train, y train)

Pipeline(steps=[('standardscaler', StandardScaler()),
('xgbclassifier"',
XGBClassifier(eval metric='logloss', gamma=3,
learning rate=0.01, n estimators=150,
random_state=1, scale pos weight=10,



subsample=0.8))1)

# Calculating different metrics
get_metrics_score(xgb_tunedl)

# Creating confusion matrix
make confusion matrix(xgb tunedl, y test)

Accuracy on training set : 0.6617740906190173

Accuracy on test set : 0.6413690476190477

Recall on training set : 0.9658119658119658

Recall on test set : 0.8

Precision on training set : 0.30213903743315507

Precision on test set : 0.26578073089701
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e The test recall has increased by ~40% as compared to the result from cross-validation with default parameters.

RandomizedSearchCV

%%time

#Creating pipeline
pipe=make pipeline(StandardScaler(),XGBClassifier(random state=1,eval metric='logloss', n estimators = 50))

#Parameter grid to pass in RandomizedSearchCV

param grid={'xgbclassifier n estimators':np.arange(50,300,50),
‘xgbclassifier scale pos weight':[0,1,2,5,10],
'xgbclassifier learning rate':[0.01,0.1,0.2,0.05],
'xgbclassifier gamma':[0,1,3,5],
'xgbclassifier subsample':[0.7,0.8,0.9,1],
'xgbclassifier max depth':np.arange(1,10,1),
‘xgbclassifier reg lambda':[0,1,2,5,10]}

# Type of scoring used to compare parameter combinations
scorer = metrics.make scorer(metrics.recall score)

#Calling RandomizedSearchCV
randomized cv = RandomizedSearchCV(estimator=pipe, param distributions=param grid, n iter=50, scoring=scorer, cv=

#Fitting parameters in RandomizedSearchCV
randomized cv.fit(X train,y train)

print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score ))

Best parameters are {'xgbclassifier subsample': 0.8, 'xgbclassifier scale pos weight': 10, 'xgbclassifier reg
lambda': 2, 'xgbclassifier n estimators': 50, 'xgbclassifier max depth': 2, 'xgbclassifier learning rate': 0.0



5, 'xgbclassifier gamma': 3} with CV score=0.9148011100832563:
CPU times: user 1min 32s, sys: 211 ms, total: 1lmin 32s
Wall time: 1min 33s

%%time

#Creating pipeline
pipe=make pipeline(StandardScaler(),XGBClassifier(random state=1,eval metric='logloss', n estimators = 50))

#Parameter grid to pass in RandomizedSearchCV

param_grid={'xgbclassifier n estimators':np.arange(50,300,50),
'xgbclassifier scale pos weight':[0,1,2,5,10],
'xgbclassifier learning rate':[0.01,0.1,0.2,0.05],
'xgbclassifier gamma':[0,1,3,51,
‘xgbclassifier subsample':[0.7,0.8,0.9,1],
'xgbclassifier max depth':np.arange(1,10,1),
‘xgbclassifier reg lambda':[0,1,2,5,10]1}

# Type of scoring used to compare parameter combinations
scorer = metrics.make scorer(metrics.recall score)

#Calling RandomizedSearchCV
randomized cv = RandomizedSearchCV(estimator=pipe, param distributions=param grid, n iter=50, scoring=scorer, cv=

#Fitting parameters in RandomizedSearchCV
randomized cv.fit(X train,y train)

print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score ))

Best parameters are {'xgbclassifier subsample': 0.8, 'xgbclassifier scale pos weight': 10, 'xgbclassifier reg
lambda': 2, 'xgbclassifier n estimators': 50, 'xgbclassifier max depth': 2, 'xgbclassifier learning rate': 0.0
5, 'xgbclassifier gamma': 3} with CV score=0.9148011100832563:

CPU times: user 1min 41s, sys: 735 ms, total: 1lmin 42s

Wall time: 1min 43s

randomized cv.best params

{'xgbclassifier subsample': 0.8,
'xgbclassifier scale pos weight': 10,
'xgbclassifier reg lambda': 2,
'xgbclassifier n estimators': 50,
'xgbclassifier max depth': 2,
'xgbclassifier learning rate': 0.05,
'xgbclassifier gamma': 3}

# Creating new pipeline with best parameters
xgb tuned2 = Pipeline(
steps=[
("scaler", StandardScaler()),
(
"XGB",
XGBClassifier(
random state=1,
n_estimators=randomized cv.best params ['xgbclassifier n estimators'],
scale pos weight=10,
gamma=3,
subsample=0.9,
learning rate= 0.05,
eval metric='logloss', max depth = 2, reg lambda = 2
),
),
1
)
# Fit the model on training data
xgb tuned2.fit(X train, y train)

Pipeline(steps=[('scaler', StandardScaler()),
("XGB',
XGBClassifier(eval metric='logloss', gamma=3,
learning rate=0.05, max depth=2, n estimators=50,
random_state=1, reg lambda=2,
scale pos weight=10, subsample=0.9))1)



# Calculating different metrics
get metrics score(xgb_tuned2)

# Creating confusion matrix
make confusion matrix(xgb tuned2, y test)

Accuracy on training set : 0.5851946394384173
Accuracy on test set : 0.5967261904761905
Recall on training set : 0.9529914529914529
Recall on test set : 0.87

Precision on training set : 0.25870069605568446
Precision on test set : 0.25217391304347825
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e Random search is giving better results than Grid search.
e The test recall has increased as compared to the test recall from grid search but the accuracy and precision have decreased.
e The overfitting in the model has also decreased

Comparing all models

# defining list of models
models = [abc tunedl, abc tuned2, xgb tunedl, xgb tuned2?]

# defining empty lists to add train and test results
acc train = []

acc test = []
recall train = []
recall test = []
precision train = []

precision_test = []

# looping through all the models to get the metrics score - Accuracy, Recall and Precision
for model in models:

j = get metrics score(model, False)
acc_train.append(j[0])
acc_test.append(j[1])

recall train.append(j[2])

recall test.append(j[3])
precision_train.append(j[4])
precision test.append(j[5])

comparison frame = pd.DataFrame(

"Model": [
"Adaboost with GridSearchCV",
"Adaboost with RandomizedSearchCv",
"XGBoost with GridSearchCV",
"XGBoost with RandomizedSearchCV",



I,

"Train Accuracy": acc_train,

"Test Accuracy": acc_test,

"Train Recall": recall train,

"Test Recall": recall test,
"Train_Precision": precision_train,
"Test Precision": precision_test,

)

# Sorting models in decreasing order of test recall
comparison frame.sort values(by="Test Recall", ascending=False)

Model Train_Accuracy Test_Accuracy Train_Recall Test_Recall Train_Precision Test_Precision

3 XGBoost with RandomizedSearchCV 0.585195 0.596726 0.952991 0.87 0.258701 0.252174
2 XGBoost with GridSearchCV 0.661774 0.641369 0.965812 0.80 0.302139 0.265781
0 Adaboost with GridSearchCV 0.992980 0.858631 0.978632 0.44 0.974468 0.530120
1 Adaboost with RandomizedSearchCV 0.992980 0.858631 0.978632 0.44 0.974468 0.530120

e The xgboost model tuned using randomised search is giving the best test recall of 0.87 but it has the least train and test precision.
o Let's see the feature importance from the tuned xgboost model

feature names = X train.columns
importances = xgb_tuned2[1].feature importances
indices = np.argsort(importances)

plt.figure(figsize=(12, 12))

plt.title("Feature Importances")

plt.barh(range(len(indices)), importances[indices], color="violet", align="center")
plt.yticks(range(len(indices)), [feature names[i] for i in indices])
plt.xlabel("Relative Importance")

plt.show()

Feature Importances

MntGoldProds
MumCatalogPurchases
Recency

Teenhome

Income

Reg_year
NumWeb'VisitshMonth
Marital_Status_Marned
MntWines
MntMeatProducts
NumWebPurchases

MumSterePurchases

Education_PhD
Education_Graduation
MntFizhProducts
Kidhome

MntFruits
NumDealsPurchases
MntSweetProducts
Education_NMaster
Reg_week
Marital_Status_Single
Complain

Age

Reg_month
Marital_Status_Widow

0.

[=]

0 ooz 004 006 008 o0 012 014 016
Relative Importance



e Amount spent on gold products is the most important feature, followed by NumCatalogPurchases and the Recency of the customer.

Business Recommendations

e Company should target customers who buy premium products - gold products or high-quality wines - as these customers can spend
more and are more likely to purchase the offer. The company should further launch premium offers for such customers. Such offers can
also be extended to customers with higher income.

o We observed in our analysis that ~64% of customers are married but single customers, including divorced and widowed, are more likely
to take the offer. The company should expand its customers by customizing offers to attract more single customers.

e Customers who are frequent buyers, should be targeted more by the company and offer them added benefits.

e Total amount spent has decreased over the years which shows that either our product qualities have declined or the company lacks
marketing strategies. The company should constantly improve its marketing strategies to address such issues.

e Our analysis showed that ~99% of customers had no complaints in the last two years which can be due to the lack of feedback options
for customers. The company should create easy mechanisms to gather feedback from the customers and use it to identify major
concerns if any.

e The number of web visits is an important feature and the company should work on customizing its website to allow more traffic on the
website. The company can improve the interface and provide easy check-in, check-out and delivery options.
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