
MovieLens	Case	Study

The	GroupLens	Research	Project	is	a	research	group	in	the	Department	of	Computer	Science	and	Engineering	at	the	University	of
Minnesota.	The	data	is	widely	used	for	collaborative	filtering	and	other	filtering	solutions.	However,	we	will	be	using	this	data	to	act	as	a
means	to	demonstrate	our	skill	in	using	Python	to	“play”	with	data.

Datasets	Information:

ratings.csv:	It	contains	information	on	ratings	given	by	the	users	to	a	particular	movie.	Columns:	user	id,	movie	id,	rating,	timestamp

movie.csv:	File	contains	information	related	to	the	movies	and	its	genre.	Columns:	movie	id,	movie	title,	release	date,	unknown,	Action,
Adventure,	Animation,	Children’s,	Comedy,	Crime,	Documentary,	Drama,	Fantasy,	Film-Noir,	Horror,	Musical,	Mystery,	Romance,	Sci-Fi,
Thriller,	War,	Western

user.csv:	It	contains	information	of	the	users	who	have	rated	the	movies.	Columns:	user	id,	age,	gender,	occupation,	zip	code

Objective:

To	extract	insights	from	the	dataset

Learning	Outcomes:

Use	of	Pandas	Functions	-	shape,	describe,	groupby,	merge	etc.

Domain

Internet	and	Entertainment

Note	that	the	case	study	will	need	you	to	apply	the	concepts	of	groupby	and	merging	extensively.

1.	Import	the	necessary	packages

2.	Read	all	the	three	datasets

3.	View	the	first	5	rows	of	all	the	datasets.

Note	that	you	will	need	to	do	it	for	all	the	three	datasets	seperately

user	id movie	id rating timestamp

0 196 242 3 881250949

1 186 302 3 891717742

2 22 377 1 878887116

3 244 51 2 880606923

4 166 346 1 886397596

movie
id movie	title release

date Action Adventure Animation Childrens Comedy Crime Documentary ... Fantasy Film-
Noir Horror Musical Mystery

0 1 Toy	Story 1-Jan-
95 0 0 1 1 1 0 0 ... 0 0 0 0

1 2 GoldenEye 1-Jan-
95 1 1 0 0 0 0 0 ... 0 0 0 0

import	pandas	as	pd
import	numpy	as	np

#	Reading	datasets	by	using	read_csv	from	pandas	package
ratings	=	pd.read_csv("ratings.csv")
movie	=	pd.read_csv("movie.csv")
user	=	pd.read_csv("user.csv")

ratings.head(5)

movie.head(5)

2 3 Four
Rooms

1-Jan-
95 0 0 0 0 0 0 0 ... 0 0 0 0

3 4 Get	Shorty 1-Jan-
95 1 0 0 0 1 0 0 ... 0 0 0 0

4 5 Copycat 1-Jan-
95 0 0 0 0 0 1 0 ... 0 0 0 0

5	rows	×	21	columns

user	id age gender occupation zip	code

0 1 24 M technician 85711

1 2 53 F other 94043

2 3 23 M writer 32067

3 4 24 M technician 43537

4 5 33 F other 15213

4.	Understand	the	shape	of	all	the	datasets.

Note	that	you	will	need	to	do	it	for	all	the	three	datasets	seperately

(100000,	4)

Observation:	There	are	100000	rows	and	4	columns	in	the	ratings	dataset

(943,	5)

Observation:	There	are	943	rows	and	5	columns	in	the	user	dataset

(1680,	21)

Observation:	There	are	1680	rows	and	21	columns	in	the	movie	dataset

5.	Check	the	data	types	of	the	columns	for	all	the	datasets.

Note	that	you	will	need	to	do	it	for	all	the	three	datasets	seperately

user	id						int64
movie	id					int64
rating							int64
timestamp				int64
dtype:	object

Observation:	All	columns	have	integer	data	type

user.head(5)

#	ratings
ratings.shape

#	user
user.shape

#	movie
movie.shape

#	ratings
#	We	use	dataframe.dtypes	to	get	the	data	types	of	each	column
ratings.dtypes	

user	id								int64
age												int64
gender								object
occupation				object
zip	code						object
dtype:	object

Observations:

1.	 user	id	and	age	columns	are	of	integer	data	types
2.	 gender,	occupation	and	zip	code	columns	are	of	string	data	type

movie	id									int64
movie	title					object
release	date				object
Action											int64
Adventure								int64
Animation								int64
Childrens								int64
Comedy											int64
Crime												int64
Documentary						int64
Drama												int64
Fantasy										int64
Film-Noir								int64
Horror											int64
Musical										int64
Mystery										int64
Romance										int64
Sci-Fi											int64
Thriller									int64
War														int64
Western										int64
dtype:	object

Observation:

1.	 movie	title	and	release	date	are	of	string	data	type
2.	 movie	id	and	all	genres	are	of	interger	data	type

6.	Give	a	statistical	summary	for	all	the	datasets.

Note	that	you	will	need	to	do	it	for	all	the	three	datasets	seperately

user	id movie	id rating timestamp

count 100000.00000 100000.000000 100000.000000 1.000000e+05

mean 462.48475 425.530130 3.529860 8.835289e+08

std 266.61442 330.798356 1.125674 5.343856e+06

min 1.00000 1.000000 1.000000 8.747247e+08

25% 254.00000 175.000000 3.000000 8.794487e+08

50% 447.00000 322.000000 4.000000 8.828269e+08

75% 682.00000 631.000000 4.000000 8.882600e+08

max 943.00000 1682.000000 5.000000 8.932866e+08

#	user
user.dtypes

#	movie
movie.dtypes

#	ratings
ratings.describe()

ratings.median()

user	id												447.0
movie	id											322.0
rating															4.0
timestamp				882826944.0
dtype:	float64

Observation:	Mean	and	median	user	ratings	are	3.53	&	4.00	respectively

user	id age

count 943.000000 943.000000

mean 472.000000 34.051962

std 272.364951 12.192740

min 1.000000 7.000000

25% 236.500000 25.000000

50% 472.000000 31.000000

75% 707.500000 43.000000

max 943.000000 73.000000

Observation:	The	average	age	of	all	the	users	is	34	years	while	the	range	lies	between	7	to	73	years.

movie	id Action Adventure Animation Childrens Comedy Crime Documentary Drama Fantasy Film-Noir

count 1680.000000 1680.000000 1680.000000 1680.000000 1680.000000 1680.000000 1680.000000 1680.000000 1680.000000 1680.000000 1680.000000

mean 841.525595 0.149405 0.080357 0.025000 0.072619 0.300595 0.064881 0.029762 0.431548 0.013095 0.014286

std 485.609591 0.356593 0.271926 0.156171 0.259587 0.458653 0.246389 0.169980 0.495440 0.113717 0.118701

min 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

25% 421.750000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

50% 841.500000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

75% 1261.250000 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000

max 1682.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

Observation:	The	genres	should	be	in	categorical	format	and	not	in	the	numeric	because	it	is	of	binary	class

7.	Find	the	number	of	movies	per	genre	using	the	movie	data

Index(['movie	id',	'movie	title',	'release	date',	'Action',	'Adventure',
							'Animation',	'Childrens',	'Comedy',	'Crime',	'Documentary',	'Drama',
							'Fantasy',	'Film-Noir',	'Horror',	'Musical',	'Mystery',	'Romance',
							'Sci-Fi',	'Thriller',	'War',	'Western'],
						dtype='object')

Action									251
Adventure						135
Animation							42
Childrens						122

#	user
user.describe()

#	movie
movie.describe()

#	Getting	all	the	column	names
movie.columns	

df_genres	=	movie.drop(['movie	id',	'movie	title',	'release	date'],	axis=1)

df_genres.sum()

Comedy									505
Crime										109
Documentary					50
Drama										725
Fantasy									22
Film-Noir							24
Horror										92
Musical									56
Mystery									61
Romance								247
Sci-Fi									101
Thriller							251
War													71
Western									27
dtype:	int64

0							3
1							3
2							1
3							3
4							3
							..
1675				1
1676				2
1677				2
1678				1
1679				1
Name:	sum,	Length:	1680,	dtype:	int64

Action									251
Adventure						135
Animation							42
Childrens						122
Comedy									505
Crime										109
Documentary					50
Drama										725
Fantasy									22
Film-Noir							24
Horror										92
Musical									56
Mystery									61
Romance								247
Sci-Fi									101
Thriller							251
War													71
Western									27
dtype:	int64

Action									251
Adventure						135
Animation							42
Childrens						122
Comedy									505
Crime										109
Documentary					50
Drama										725

df_genres["sum"]	=	df_genres.sum(axis=1)

df_genres["sum"]

	

#	Taking	all	the	genre	columns	and	finding	the	sum	for	every	column
movie[['Action',
							'Adventure',	'Animation',	'Childrens',	'Comedy',	'Crime',	'Documentary',
							'Drama',	'Fantasy',	'Film-Noir',	'Horror',	'Musical',	'Mystery',
							'Romance',	'Sci-Fi',	'Thriller',	'War',	'Western']].sum()	

#	Alternatively,	we	can	also	loc	function
movie.loc[:,'Action':'Western'].sum()

Fantasy									22
Film-Noir							24
Horror										92
Musical									56
Mystery									61
Romance								247
Sci-Fi									101
Thriller							251
War													71
Western									27
dtype:	int64

Drama										725
Comedy									505
Action									251
Thriller							251
Romance								247
Adventure						135
Childrens						122
Crime										109
Sci-Fi									101
Horror										92
War													71
Mystery									61
Musical									56
Documentary					50
Animation							42
Western									27
Film-Noir							24
Fantasy									22
dtype:	int64

Observations:

1.	 Drama	and	Comedy	are	the	most	common	movie	genre.
2.	 Clearly,	there	are	some	movies	that	have	more	than	one	genre.

8.	Find	the	movies	that	have	more	than	one	genre

Hint:	use	sum	on	the	axis	=	1

Index(['movie	id',	'movie	title',	'release	date',	'Action',	'Adventure',
							'Animation',	'Childrens',	'Comedy',	'Crime',	'Documentary',	'Drama',
							'Fantasy',	'Film-Noir',	'Horror',	'Musical',	'Mystery',	'Romance',
							'Sci-Fi',	'Thriller',	'War',	'Western'],
						dtype='object')

						movie	id									movie	title		Number	of	Genres
0												1										Toy	Story																		3
1												2										GoldenEye																		3
3												4									Get	Shorty																		3
4												5												Copycat																		3
6												7					Twelve	Monkeys																		2
...							
1666						1669		MURDER	and	murder																		3

#	Sorting	the	movies	across	genres
number	=	movie.loc[:,'Action':'Western'].sum()
number.sort_values(ascending	=	False)

#	Checking	column	names
movie.columns

new_movie	=	movie[['movie	id',	'movie	title']].copy()

new_movie.loc[:,	"Number	of	Genres"]	=	movie.loc[:,	'Action':'Western'].sum(axis=1)

#	Filtering	movies	that	have	more	than	1	genres
multi_genre_movies	=	new_movie[new_movie['Number	of	Genres']	>	1]
print(multi_genre_movies)

1667						1670												Tainted																		2
1670						1673													Mirage																		2
1676						1679										B.	Monkey																		2
1677						1680						Sliding	Doors																		2

[849	rows	x	3	columns]

Observation:	849	movies	have	more	than	one	genre.

9.	Find	the	top	25	movies	according	to	average	ratings	such	that	each	movie	has	number	of	ratings
more	than	100

Hint	:

1.	 First	find	the	movies	that	have	more	than	100	ratings(use	groupby	and	count).	Extract	the	movie	id	in	a	list.
2.	 Find	the	average	rating	of	all	the	movies	and	sort	them	in	the	descending	order.
3.	 Use	isin(list	obtained	from	1)	to	filter	out	the	movies	which	have	more	than	100	ratings.
4.	 You	will	have	to	use	the	.merge()	function	to	get	the	movie	titles.

Note:	This	question	will	need	you	to	research	about	groupby	and	apply	your	findings.	You	can	find	more	on	groupby	on
https://realpython.com/pandas-groupby/.

movie
id

movie
title

release
date Action Adventure Animation Childrens Comedy Crime Documentary ... Musical Mystery Romance Sci-

Fi Thriller

0 1 Toy
Story

1-Jan-
95 0 0 1 1 1 0 0 ... 0 0 0 0 0

1 1 Toy
Story

1-Jan-
95 0 0 1 1 1 0 0 ... 0 0 0 0 0

2 1 Toy
Story

1-Jan-
95 0 0 1 1 1 0 0 ... 0 0 0 0 0

3 1 Toy
Story

1-Jan-
95 0 0 1 1 1 0 0 ... 0 0 0 0 0

4 1 Toy
Story

1-Jan-
95 0 0 1 1 1 0 0 ... 0 0 0 0 0

5	rows	×	24	columns

(99990,	24)

movie	title rating

0 'Til	There	Was	You 9

1 1-900 5

2 101	Dalmatians 109

3 12	Angry	Men 125

4 187 41

2												101	Dalmatians	

#	Merging	ratings	dataset	with	movie	dataset
df_merge	=	movie.merge(ratings,	on	=	'movie	id',	how	=	'inner')
df_merge.head()

#	Checking	the	dimensions	of	the	merged	dataframe
df_merge.shape

#	Finding	the	count	of	ratings	for	each	movie	using	groupby()	and	count()
#	reset_index()	is	used	to	shift	movie	title	from	being	the	dataframe’s	(movie_count’s)	index	to	
#	being	just	a	normal	column	
movie_count	=	df_merge.groupby(['movie	title'])['rating'].count().reset_index()
movie_count.head()

#	Extracting	the	movie	titles	that	have	more	than	100	ratings	
movie_100	=	movie_count[movie_count['rating']>100]['movie	title']
movie_100.head()

https://realpython.com/pandas-groupby/

2												101	Dalmatians	
3														12	Angry	Men	
7					2001:	A	Space	Odyssey	
15											Absolute	Power	
16															Abyss,	The	
Name:	movie	title,	dtype:	object

334

movie	title rating

0 Great	Day	in	Harlem,	A 5.0

1 Prefontaine 5.0

2 Someone	Else's	America 5.0

3 Entertaining	Angels:	The	Dorothy	Day	Story 5.0

4 Marlene	Dietrich:	Shadow	and	Light	(5.0

...

1652 Babyfever 1.0

1653 Lashou	shentan 1.0

1654 Shadows	(Cienie) 1.0

1655 Shadow	of	Angels	(Schatten	der	Engel) 1.0

1656 Power	98 1.0

1657	rows	×	2	columns

movie	title rating

15 Close	Shave,	A 4.491071

16 Schindler's	List 4.466443

17 Wrong	Trousers,	The 4.466102

18 Casablanca 4.456790

20 Shawshank	Redemption,	The 4.445230

21 Rear	Window 4.387560

22 Usual	Suspects,	The 4.385768

23 Star	Wars 4.358491

24 12	Angry	Men 4.344000

28 Citizen	Kane 4.292929

30 To	Kill	a	Mockingbird 4.292237

31 One	Flew	Over	the	Cuckoo's	Nest 4.291667

32 Silence	of	the	Lambs,	The 4.289744

33 North	by	Northwest 4.284916

34 Godfather,	The 4.283293

35 Secrets	&	Lies 4.265432

36 Good	Will	Hunting 4.262626

37 Manchurian	Candidate,	The 4.259542

38 Dr.	Strangelove	or:	How	I	Learned	to	Stop	Worr... 4.252577

len(movie_100)

#	Finding	average	ratings	for	each	movie	and	sorting	them	out	in	descending	order,
#	using	groupby()	and	sort_values()	on	merged	data	frame
avg_rating	=	df_merge.groupby(['movie	title'])['rating'].mean().sort_values(ascending=False).reset_index()
avg_rating

	

#	Extracting	movie	titles	that	have	more	than	100	ratings	using	movie	titles	in	movie_100	and	isin()	function
#	Displaying	top	25	rows	only
avg_rating[avg_rating['movie	title'].isin(movie_100)].head(25)

39 Raiders	of	the	Lost	Ark 4.252381

40 Vertigo 4.251397

44 Titanic 4.245714

45 Lawrence	of	Arabia 4.231214

47 Maltese	Falcon,	The 4.210145

48 Empire	Strikes	Back,	The 4.204360

10.	See	gender	distribution	across	different	genres	check	for	the	validity	of	the	below	statements

Men	watch	more	drama	than	women
Women	watch	more	Sci-Fi	than	men
Men	watch	more	Romance	than	women

compare	the	percentages

1.	 There	is	no	need	to	conduct	statistical	tests	around	this.	Just	compare	the	percentages	and	comment	on	the	validity	of	the	above
statements.

2.	 you	might	want	ot	use	the	.sum(),	.div()	function	here.

3.	 Use	number	of	ratings	to	validate	the	numbers.	For	example,	if	out	of	4000	ratings	received	by	women,	3000	are	for	drama,	we	will
assume	that	75%	of	the	women	watch	drama.

movie
id movie	title release

date Action Adventure Animation Childrens Comedy Crime Documentary ... Thriller War Western user
id rating

0 1 Toy	Story 1-Jan-
95 0 0 1 1 1 0 0 ... 0 0 0 308

1 4 Get	Shorty 1-Jan-
95 1 0 0 0 1 0 0 ... 0 0 0 308

2 5 Copycat 1-Jan-
95 0 0 0 0 0 1 0 ... 1 0 0 308

3 7 Twelve
Monkeys

1-Jan-
95 0 0 0 0 0 0 0 ... 0 0 0 308

4 8 Babe 1-Jan-
95 0 0 0 1 1 0 0 ... 0 0 0 308

...

99985 748 Saint,	The 14-
Mar-97 1 0 0 0 0 0 0 ... 1 0 0 729

99986 751 Tomorrow
Never	Dies

1-Jan-
97 1 0 0 0 0 0 0 ... 1 0 0 729

99987 879 Peacemaker,
The

1-Jan-
97 1 0 0 0 0 0 0 ... 1 1 0 729

99988 894 Home	Alone
3

1-Jan-
97 0 0 0 1 1 0 0 ... 0 0 0 729

99989 901 Mr.	Magoo 25-
Dec-97 0 0 0 0 1 0 0 ... 0 0 0 729

99990	rows	×	28	columns

Action Adventure Animation Childrens Comedy Crime Documentary Drama Fantasy Film-
Noir Horror Musical Mystery Romance Sci-Fi

gender

#	Merging	user	dataset	with	movie	and	ratings(already	merged	:	df_merge)	dataset
df_merge_all	=	df_merge.merge(user,	on	=	'user	id',	how	=	'inner')

df_merge_all

#	Group	by	gender	and	aggregate	with	sum,	selecting	all	the	genre	columns	
Genre_by_gender	=	df_merge_all.groupby('gender').sum().loc[:,'Action':'Western']	

Genre_by_gender

F 5442 3141 995 2232 8068 1794 187 11008 363 385 1197 1442 1314 5858 2629

M 20147 10612 2610 4950 21764 6261 571 28887 989 1348 4120 3512 3931 13603 10101

gender F M

Action 5442 20147

Adventure 3141 10612

Animation 995 2610

Childrens 2232 4950

Comedy 8068 21764

Crime 1794 6261

Documentary 187 571

Drama 11008 28887

Fantasy 363 989

Film-Noir 385 1348

Horror 1197 4120

Musical 1442 3512

Mystery 1314 3931

Romance 5858 13603

Sci-Fi 2629 10101

Thriller 5086 16786

War 2189 7209

Western 371 1483

total 25738 74252

gender F M

Action 21.143834 27.133276

Adventure 12.203745 14.291871

Animation 3.865879 3.515057

Childrens 8.672002 6.666487

Comedy 31.346647 29.310995

Crime 6.970239 8.432096

Documentary 0.726552 0.769003

Drama 42.769446 38.904003

Fantasy 1.410366 1.331951

Film-Noir 1.495843 1.815439

Horror 4.650711 5.548672

Musical 5.602611 4.729839

Mystery 5.105292 5.294133

Romance 22.760121 18.320045

Sci-Fi 10.214469 13.603674

Thriller 19.760665 22.606798

War 8.504934 9.708829

Western 1.441448 1.997253

total 100.000000 100.000000

Here	are	the	five	top	conclusions	based	on	the	revised	and	cleaned-

#	Add	Row	total	of	the	dataframe,	to	get	the	total	number	of	Males	and	Females	who	gave	ratings
Genre_by_gender['total']	=	df_merge_all['gender'].value_counts()		

Genre_by_gender.T

#	Divide	each	cell	with	row	total	and	multiply	by	100	to	get	the	percentage
(Genre_by_gender.div(Genre_by_gender.total,	axis=	0)	*	100).T

Here	are	the	five	top	conclusions	based	on	the	revised	and	cleaned-
up	MovieLens	case	study:

Genre	Distribution:
Drama	and	Comedy	are	the	most	common	genres	among	the	movies	in	the	dataset,	with	Drama	having	725	movies	and	Comedy	having	505.
These	two	genres	dominate	the	dataset,	indicating	a	higher	production	of	movies	in	these	categories.	Movies	with	Multiple	Genres:

A	significant	number	of	movies	belong	to	multiple	genres.	Out	of	1680	movies,	849	movies	have	more	than	one	genre	assigned	to	them.	This
highlights	the	versatility	and	blending	of	genres	in	the	film	industry.	Top-Rated	Movies:

The	top-rated	movies	with	more	than	100	ratings	include	classics	like	"Close	Shave,	A",	"Schindler's	List",	"Wrong	Trousers,	The",
"Casablanca",	and	"Shawshank	Redemption,	The".	These	movies	have	high	average	ratings,	demonstrating	their	popularity	and	critical
acclaim	among	users.	Gender	Preferences	in	Genres:

Drama	is	more	popular	among	women,	with	43%	of	the	ratings	given	by	women	for	Drama	movies,	compared	to	39%	by	men.	Conversely,
men	prefer	genres	like	Action	(27%	of	ratings	by	men)	and	Sci-Fi	(14%	of	ratings	by	men)	more	than	women,	who	gave	21%	and	10%	of	their
ratings	to	these	genres,	respectively.	Age	Distribution	of	Users:

The	average	age	of	users	in	the	dataset	is	34	years,	with	a	standard	deviation	of	approximately	12	years.	The	age	range	spans	from	7	to	73
years,	showing	a	wide	demographic	of	movie	watchers.	This	diversity	in	age	indicates	that	the	MovieLens	dataset	captures	a	broad	audience
with	varied	movie	preferences.

Loading	[MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

