Brain Tumor Classification

Context

Brain tumor is known to be one of the most aggressive diseases that affect both children and adults. Of all primary Central Nervous System
(CNS) tumors, brain tumors account for 85 to 90 percent. Around 11,700 individuals are diagnosed with a brain tumor every year. For
individuals with a cancerous brain or CNS tumor, the 5-year survival rate is around 34 percent for men and 36 percent for women. Brain
tumors are classified into Benign Tumors, Pituitary Tumors, Malignant Tumors etc. In order to increase the life expectancy of patients,
adequate care, preparation and reliable diagnostics are required in the treatment process.

Magnetic Resonance Imaging (MRI) is the best way to identify brain tumors. A huge amount of image data is produced through MRI Scans.
However, there are several anomalies in the tumor size and location (s). This makes it very difficult to completely comprehend the nature of
the tumor. A trained neurosurgeon is usually needed for MRI image analysis. The lack of qualified doctors and the lack of
knowledge about tumors makes it very difficult and time-consuming for clinical facilities in developing countries to perform MRI
studies. Due to the level of difficulty involved in comprehending the nature of brain tumors and their properties, manual analyses can be
highly error-prone. That makes an automated MRI analysis system crucial to solve this problem.

Applications of automated classification techniques using Machine Learning (ML) and Artificial Intelligence (Al) algorithms have
consistently shown better performance than manual classification. It would therefore be highly beneficial to write an algorithm that
performs detection and classification of brain tumors using Deep Learning Algorithms.

Dataset

The dataset folder contains MRI data. The images are already split into Training and Testing folders. Each folder has more four subfolders
named "glioma_tumor", "meningioma_tumor", "no_tumor" and "pituitary_tumor" . These folders have MRI images of the
respective tumor classes.

Instructions to access the data through Google Colab:

Follow the below steps:

1) Download the zip file from Olympus and extract it in your local system.
2) Upload the extracted folder into your drive.

3) Mount your Google Drive using the code below.

from google.colab import drive
drive.mount('/content/drive')

4) Now, you can read the dataset as mentioned in the code below.

Problem Statement

To build a classification model that can take images of MRI scans as input and can classify them into one of the following types of tumor:

glioma_tumor , meningioma_tumor , pituitary_tumor and no_tumor .

from google.colab import drive
drive.mount('/content/drive")

Mounted at /content/drive

Importing the libraries

#Reading the training images from the path and labelling them into the given categories
import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import cv2

import os

import seaborn as sns # for data visualization

import tensorflow as tf

import keras

from tensorflow.keras.models import Sequential #sequential api for sequential model



from tensorflow.keras.layers import Dense, Dropout, Flatten #importing different layers

from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Activation, Input, LeakyRelLU,Active
from tensorflow.keras import backend as K

from tensorflow.keras.utils import to categorical #to perform one-hot encoding

from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D

from keras.optimizers import RMSprop,Adam #optimiers for optimizing the model

from keras.callbacks import EarlyStopping #regularization method to prevent the overfitting

from keras.callbacks import ModelCheckpoint

from tensorflow.keras.models import Sequential, Model

from tensorflow.keras import losses, optimizers

Reading the Training Data

DATADIR = r"/content/drive/MyDrive/Data Set Brain Tumor/Training"
CATEGORIES = ["glioma tumor","meningioma tumor","no tumor","pituitary tumor"]

#Storing all the training images
training data = []

def create training data():
for category in CATEGORIES:
path = os.path.join(DATADIR, category)
class num = CATEGORIES.index(category)
for img in os.listdir(path):
try:
img array = cv2.imread(os.path.join(path,img),cv2.IMREAD GRAYSCALE)# Converting image to greyscai
new array = cv2.resize(img array, (IMG_SIZE,IMG SIZE))
training data.append([new array,class num])
except Exception as e:
pass
create training data()

Reading the Testing Dataset

DATADIR = r"/content/drive/MyDrive/Data Set Brain Tumor/Testing"
CATEGORIES = ["glioma tumor","meningioma tumor","no tumor","pituitary tumor"]

#Storing all the training images
testing data = []

def create testing data():
for category in CATEGORIES:
path = os.path.join(DATADIR, category)
class num = CATEGORIES.index(category)
for img in os.listdir(path):
try:
img array = cv2.imread(os.path.join(path,img),cv2.IMREAD GRAYSCALE)# Converting image to greyscal
new array = cv2.resize(img array, (IMG SIZE,IMG SIZE))
testing data.append([new array,class num])
except Exception as e:
pass
create testing data()

Data Preprocessing

# Separating the images and labels
X train = []
y train = []
np.random.shuffle(training data)
for features,label in training data:
X train.append(features)
y train.append(label)
X train= np.array(X train)
print(X_train.shape)

# Normalizing pixel values

X train = X train/255.0

# image reshaping

X train = X train.reshape(-1,150,150,1)

(2881, 150, 150)

X test

[
y test [1

np.random.shuffle(testing data)
IMG_SIZE = 150



for features,label in testing data:
X test.append(features)
y test.append(label)
X test = np.array(X test).reshape(-1,IMG SIZE,IMG SIZE)
print (X test.shape)
X test = X test/255.0
X test = X test.reshape(-1,150,150,1)

(402, 150, 150)

Exploratory Data Analysis

#creating the dataframe to plot the pie chart
df=pd.DataFrame(y train,columns=['Suffering'])

#plotting the pie chart
labels = 'Tumor', 'Non Tumor'
sizes = [df.Suffering[df['Suffering']!=0].count(), df.Suffering[df['Suffering']==0].count()]
explode = (0, 0.1)
figl, ax1l = plt.subplots(figsize=(10, 8))
axl.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%"',
shadow=True, startangle=90)
axl.axis('equal')
plt.title("Proportion of tumor and non tumor patients ", size = 20)
plt.show()

Proportion of tumor and non tumor patients

Mon_Tumor

The above plot shows that this dataset is imbalanced, because 71.2% of the images are those of tumors - Majority class: glioma,
meningioma and pituitary tumors, while approx. 28.8% of the images belong to the non-tumor category (Minority class).

Let's visualize MRI images randomly from each of the three classes. The Image matrix is plotted and each row represents three single
channel images corresponding to one class. We have read single channel images in order to reduce complexity.

#train_dir = 'DATA/train' # image folder

import os

# get the list of jpegs from sub image class folders

glioma tumor imgs = [fn for fn in os.listdir(f'{DATADIR}/{CATEGORIES[0]1}"') 1]
meningioma tumor imgs = [fn for fn in os.listdir(f'{DATADIR}/{CATEGORIES[1]}') ]
no tumor imgs = [fn for fn in os.listdir(f'{DATADIR}/{CATEGORIES[2]}"') 1
pituitary tumor imgs = [fn for fn in os.listdir(f'{DATADIR}/{CATEGORIES[3]}') ]

# randomly select 3 of each

select gal = np.random.choice(glioma tumor imgs, 3, replace = False)
select menin = np.random.choice(meningioma tumor imgs, 3, replace = False)
select no t = np.random.choice(no tumor imgs, 3, replace = False)

select pit = np.random.choice(pituitary tumor imgs, 3, replace = False)
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Trom Keras.preprocessing import limage
# plotting 2 x 3 image matrix

fig = plt.figure(figsize = (10,10))
for i in range(12):

if i < 3:
fp = f'{DATADIR}/{CATEGORIES[0]}/{select gal[i]}"
label = 'Galioma Tumor'

if i>=3 and i<6:
fp = f'{DATADIR}/{CATEGORIES[1]}/{select menin[i-3]}"
label = 'Meningioma Tumor'

if i>=6 and i<9:
fp = f'{DATADIR}/{CATEGORIES[2]}/{select no t[i-6]}"
label = 'No Tumor'

if i>=9 and i<12:
fp = f'{DATADIR}/{CATEGORIES[3]}/{select pit[i-9]}"'
label = 'Pituitary Tumor'

ax = fig.add subplot(4, 3, i+l)

# to plot without rescaling, remove target size
fn = image.load img(fp, target size = (150,150), color mode='grayscale')
plt.imshow(fn, cmap='Greys r')
plt.title(label)
plt.axis('off")
plt.show()

# also check the number of files here

Galioma Tumaor Galioma Tumaor Galioma Tumaor

MNo Tumor

Pituitary Tumor

Pituitary Tumor

Finding the mean images for each class of tumor:

def find mean img(full mat, title):
# calculate the average
mean _img = np.mean(full mat, axis = 0)
# reshape it back to a matrix
mean_img = mean_img.reshape((150,150))
plt.imshow(mean img, vmin=0, vmax=255, cmap='Greys r')
plt.title(f'Average {title}"')
plt.axis('off")
plt.show()
return mean_img

galioma data=[]
menin data=[]

no_tumor data=[]
pitu data=[]

for cat in CATEGORIES:
path = os.path.join(DATADIR, cat)



for img in os.listdir(path):

img array = cv2.imread(os.path.join(path,img),cv2.IMREAD GRAYSCALE)# Converting image to greyscail
new_array = cv2.resize(img_array, (IMG_SIZE,IMG_SIZE))
if cat==CATEGORIES[O]:
galioma data.append([new array])
if cat==CATEGORIES[1]:
menin data.append([new array])
if cat==CATEGORIES[2]:
no tumor data.append([new array])
if cat==CATEGORIES[3]:
pitu data.append([new array])

norm mean = find mean img(np.array(no tumor data), 'No Tumor')

gali mean find mean img(np.array(galioma data), 'Galioma Tumor')
menin mean = find mean img(np.array(menin data), 'Meningioma Tumor')
Pitu mean = find mean img(np.array(pitu data), 'Pituitary Tumor')

Average No Tumor

Average Galioma Tumor

Average Meningioma Tumor

Average Pituitary Tumer
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fig = plt.figure(figsize = (8,6))
for i in enumerate([gali_mean,menin_mean,Pitu_mean]):

contrast mean = norm _mean - i[1]
plt.imshow(contrast mean, cmap='bwr"')
if i[0]==0:
plt.title(f'Difference Between Non Tumor & Galioma Average')
if i[0]==1:
plt.title(f'Difference Between Non Tumor & Meningioma Average')
if i[0]==2:
plt.title(f'Difference Between Non Tumor & Pituitary Average')
plt.axis('off")
plt.show()

Difference Between Non Tumor & Galioma Average

As we can see from the contrast difference between the No tumor image and the tumor image, the blue area represents the negative values,
meaning the size of the tumorous brain is more than non-tumourous brain.

One-Hot Encoding

encoded = to categorical(np.array(y train))

y train e=encoded

encoded test = to categorical(np.array(y test))
y test e=encoded test



print(y train e.shape)
print(y test e.shape)

(2881, 4)
(402, 4)

Model Building

We will be using two types of Deep Neural Networks:

e ANN (Artificial Neural Network - fully connected)
e CNN (Convolutional Neural Network)

ANN

#Build the model
# 3 layers, 1 layer to flatten the image to a 28 x 28 = 784 vector
# 1 layer with 128 neurons and relu function
# 1 layer with 10 neurons and softmax function
#Create the neural network model
def create model():
model ann = keras.Sequential([
keras.layers.Flatten(input shape=(150,150)),
keras.layers.Dense(500,kernel initializer='he uniform', activation=tf.nn.relu),
keras.layers.Dense(700,kernel initializer='he uniform', activation=tf.nn.relu),
keras.layers.Dense(4, kernel initializer='random uniform',activation=tf.nn.softmax)
1)
#Compile the model
#The loss function measures how well the model did on training , and then tries
#to improve on it using the optimizer
model_ann.compile(loss='categorical crossentropy', optimizer='adam', metrics=['accuracy'])
return model ann

model ann=create model()
model ann.summary ()

Model: "sequential 4"

Layer (type) Output Shape Param #
flatten 4 (Flatten) (None, 22500) 0

dense 12 (Dense) (None, 500) 11250500
dense 13 (Dense) (None, 700) 350700
dense 14 (Dense) (None, 4) 2804

Total params: 11,604,004
Trainable params: 11,604,004
Non-trainable params: 0

#Train the model
from keras.callbacks import EarlyStopping
from keras.callbacks import ModelCheckpoint

es = EarlyStopping(monitor='val loss', mode='min', verbose=1, patience=20)
mc = ModelCheckpoint('best model.h5', monitor='val accuracy', mode='max', verbose=1l, save best only=True)
history=model ann.fit(X train,
y train_e, #It expects integers because of the sparse categorical crossentropy loss function
epochs=200, #number of iterations over the entire dataset to train on
batch size=64,validation split=0.20,callbacks=[es, mc],use multiprocessing=True)#number of samples per

Epoch 1/200
36/36 [ ] - 4s 105ms/step - loss: 3.3193 - accuracy: 0.3551 - val loss: 1.0074 - val
_accuracy: 0.6014

Epoch 00001: val accuracy improved from -inf to 0.60139, saving model to best model.h5

Epoch 2/200

36/36 [ ] - 4s 102ms/step - loss: 0.8979 - accuracy: 0.6244 - val loss: 0.8897 - val
_accuracy: 0.6499




Epoch 00002: val accuracy
Epoch 3/200

improved from 0.60139 to 0.64991, saving model to best model.h5

36/36 [
_accuracy: 0.7088

Epoch 00003: val accuracy
Epoch 4/200

improved from 0.64991 to 0.70884, saving model to best model.h5

36/36 [
_accuracy: 0.6135

Epoch 00004: val accuracy
Epoch 5/200
36/36 [

did not improve from 0.70884

accuracy: 0.7539

Epoch 00005: val accuracy
Epoch 6/200
36/36 [

improved from 0.70884 to 0.75390, saving model to best model.h5

_accuracy: 0.7556

Epoch 00006: val accuracy
Epoch 7/200
36/36 [

improved from 0.75390 to 0.75563, saving model to best model.h5

_accuracy: 0.7782

Epoch 00007: val accuracy
Epoch 8/200
36/36 [

improved from 0.75563 to 0.77816, saving model to best model.h5

_accuracy: 0.7556

Epoch 00008: val accuracy
Epoch 9/200

did not improve from 0.77816

36/36 [
_accuracy: 0.7556

Epoch 00009: val accuracy
Epoch 10/200
36/36 [

did not improve from 0.77816

_accuracy: 0.8076

Epoch 00010: val accuracy
Epoch 11/200
36/36 [

improved from 0.77816 to 0.80763, saving model to best model.h5

_accuracy: 0.7868

Epoch 00011: val accuracy
Epoch 12/200
36/36 [

did not improve from 0.80763

accuracy: 0.7487

Epoch 00012: val accuracy
Epoch 13/200
36/36 [

did not improve from 0.80763

_accuracy: 0.7903

Epoch 00013: val accuracy
Epoch 14/200

did not improve from 0.80763

36/36 [
_accuracy: 0.8302

Epoch 00014: val accuracy
Epoch 15/200
36/36 [

improved from 0.80763 to 0.83016, saving model to best model.h5

_accuracy: 0.8146

Epoch 00015: val accuracy
Epoch 16/200
36/36 [

did not improve from 0.83016

_accuracy: 0.8111

Epoch 00016: val accuracy
Epoch 17/200
36/36 [

did not improve from 0.83016

_accuracy: 0.8302

Epoch 00017: val accuracy
Epoch 18/200
36/36 [

did not improve from 0.83016

accuracy: 0.8180

Epoch 00018: val accuracy
Epoch 19/200

did not improve from 0.83016

36/36 [

] - 4s 101lms/step - loss: 0.4647 - accuracy: 0.7991 -

] - 4s 104ms/step - loss: 0.3324 - accuracy: 0.8769 -

1 - 4s 103ms/step - loss: 0.2997 - accuracy: 0.8852 -

1 - 4s 100ms/step - loss: 0.3717 - accuracy: 0.8438 -

1 - 4s 100ms/step - loss: 0.2557 - accuracy: 0.8944 -

] - 4s 103ms/step - loss: 0.2493 - accuracy: 0.9045 -

] - 4s 100ms/step - loss: 0.2665 - accuracy: 0.9026 -

] - 4s 100ms/step - loss: 0.2062 - accuracy: 0.9258 -

] - 4s 105ms/step - loss: 0.1206 - accuracy: 0.9604 -

] - 4s 100ms/step - loss: 0.0925 - accuracy: 0.9702 -

] - 4s 100ms/step - loss: 0.0729 - accuracy: 0.9777 -

val loss:

val loss:

val loss:

val_loss:

val_loss:

val_loss:

val loss:

val loss:

val loss:

val loss:

val loss:

0.6752

0.7271

0.7827

0.7442

0.6994

0.7145

] - 4s 99ms/step - loss: 0.2031 - accuracy: 0.9190 - val loss: 1.1767 -

0.7499

0.7135

0.7134

0.7695

0.7261

] - 4s 102ms/step - loss: 0.7619 - accuracy: 0.6962 - val loss: 0.7694 - val

] - 4s 101ms/step - loss: 0.6097 - accuracy: 0.7548 - val loss: 0.8904 - val

] - 4s 99ms/step - loss: 0.5722 - accuracy: 0.7432 - val loss: 0.6688 - val

val

val

val

val

val

val

val_

val

val

val

val

val

1 - 4s 99ms/step - loss: 0.0741 - accuracy: 0.9786 - val loss: 0.7629 - val

1 - 4s 100ms/step - loss: 0.0520 - accuracy: 0.9855 - val loss: 0.8668 - val



_accuracy: 0.

Epoch 00019:
Epoch 20/200
36/36 [

8146

_accuracy: 0.

Epoch 00020:
Epoch 21/200
36/36 [

_accuracy: 0.

Epoch 00021:
Epoch 22/200
36/36 [

_accuracy: 0.

Epoch 00022:
Epoch 23/200
36/36 [

val accuracy did not improve from 0.83016

1 - 4s 100ms/step - loss:
8215
val accuracy did not improve from 0.83016

1 - 4s 100ms/step - loss:
7712
val accuracy did not improve from 0.83016

1 - 4s 100ms/step - loss:
8163
val accuracy did not improve from 0.83016

1 - 4s 100ms/step - loss:

_accuracy: 0.

Epoch 00023:
Epoch 24/200

8354

val accuracy

36/36 [
_accuracy: 0.

Epoch 00024:
Epoch 25/200

8319

val accuracy

did not

improve from 0.83536

36/36 [
_accuracy: 0.

Epoch 00025:
Epoch 00025:

8510

val accuracy improved from 0.83536 to 0.85095, saving model to best model.h5

early stopping

print(history.history.keys())

# summarize history for accuracy
plt.plot(history.history['accuracy'])
plt.plot(history.history['val accuracy'l])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')

plt.legend(['train',

plt.show()

dict

10
09

0.8

accuracy

07
0.6

0.5

import numpy

_keys(['loss',

'accuracy’,

model accuracy

10 15
epoch

'val loss',

"test'], loc='upper left')

'val_accuracy'])

20 25

model ann.evaluate(X test,y test e)

13/13 [

[5.608260154724121, 0.7064676880836487]

As we see here, the ANN does not show a good test accuracy, since ANNs are unable to capture spatial correlation characteristics of the

image

0.0663

0.1997

0.1164

0.0605

accuracy:

accuracy:

accuracy:

accuracy:

0.9783

0.9391

0.9513

0.9793

improved from 0.83016 to 0.83536, saving model to best model.h5

] - 0s 21ms/step - loss: 5.6083 - accuracy: 0.7065

] - 4s 102ms/step - loss: 0.0274 - accuracy: 0.9953 -

] - 4s 100ms/step - loss: 0.0149 - accuracy: 0.9975 -

val_loss:

val_loss:

val_loss:

val loss:

val loss:

val loss:

0.7929

1.0446

0.8863

0.7774

0.8244

0.8311

val

val

val

val

val

val



Let's try Convolutional Neural Networks, which take in the whole image as a 2D matrix instead.

Convolutional Neural Network (CNN)

Model 1: CNN with Dropout

es = EarlyStopping(monitor='val loss', mode='min', verbose=1, patience=20)

mc = ModelCheckpoint('best model.h5', monitor='val accuracy', mode='max', verbose=1l, save best only=True)

model = Sequential()

#

y train=np.array(y train)

model.add(Conv2D(filters = 64, kernel size = (5,5),padding = 'Same',
activation ='relu', input_shape = (150,150,1)))

model.add (MaxPool2D(pool size=(2,2)))

model.add(Dropout(0.25))

#

model.add(Conv2D(filters = 128, kernel size = (3,3),padding = 'Same',
activation ='relu'))

model.add (MaxPool2D(pool size=(2,2), strides=(2,2)))

model.add(Dropout(0.25))

#

model.add(Conv2D(filters = 128, kernel size = (3,3),padding = 'Same',
activation ='relu'))

model.add (MaxPool2D(pool size=(2,2), strides=(2,2)))

model.add(Dropout(0.3))

#

model.add(Conv2D(filters = 128, kernel size = (2,2),padding = 'Same',
activation ='relu'))

model.add (MaxPool2D(pool size=(2,2), strides=(2,2)))

model.add(Dropout(0.3))

#

model.add(Conv2D(filters = 256, kernel size = (2,2),padding = 'Same',
activation ='relu'))

model.add (MaxPool2D (pool size=(2,2), strides=(2,2)))

model.add (Dropout(0.3))

#

model.add(Flatten())

model.add(Dense (1024, activation = "relu"))

model.add(Dropout(0.5))

model.add(Dense(4, activation = "softmax"))

optimizer = Adam(lr=0.001, beta 1=0.9, beta 2=0.999)

model.compile(optimizer = optimizer , loss = "categorical crossentropy", metrics=["accuracy"])

epochs = 200

batch size = 64

es
mc

EarlyStopping(monitor='val loss', mode='min', verbose=1, patience=5)
ModelCheckpoint('best model.h5', monitor='val accuracy', mode='max', verbose=1l, save best only=True)

history=model.fit(X train,
y train e, #It expects integers because of the sparse categorical crossentropy loss function
epochs=30, #number of iterations over the entire dataset to train on
batch size=64,validation split=0.20,callbacks=[es, mc],use multiprocessing=True)#number of samples per

Epoch 1/30
36/36 [ ] - 248s 7s/step - loss: 1.3788 - accuracy: 0.3474 - val loss: 1.2375 - val
accuracy: 0.4887

Epoch 00001: val accuracy improved from -inf to 0.48873, saving model to best model.h5

Epoch 2/30

36/36 [ 1 - 248s 7s/step - loss: 1.1186 - accuracy: 0.5234 - val loss: 1.0731 - val
accuracy: 0.5269

Epoch 00002: val accuracy improved from 0.48873 to 0.52686, saving model to best model.h5

Epoch 3/30

36/36 [ 1 - 245s 7s/step - loss: 0.8693 - accuracy: 0.6094 - val loss: 0.7816 - val
accuracy: 0.6603

Epoch 00003: val accuracy improved from 0.52686 to 0.66031, saving model to best model.h5

Epoch 4/30

36/36 [ 1 - 245s 7s/step - loss: 0.7257 - accuracy: 0.6775 - val loss: 0.7234 - val
accuracy: 0.6794

Epoch 00004: val accuracy improved from 0.66031 to 0.67938, saving model to best model.h5

Epoch 5/30

36/36 [ 1 - 246s 7s/step - loss: 0.6721 - accuracy: 0.7044 - val loss: 0.6501 - val
accuracy: 0.7123

Epoch 00005: val accuracy improved from 0.67938 to 0.71231, saving model to best model.h5
Epoch 6/30
36/36 [ ] - 245s 7s/step - loss: 0.6198 - accuracy: 0.7445 - val loss: 0.6855 - val




accuracy: 0.

Epoch 00006:
Epoch 7/30

7071

val accuracy

did not improve from 0.71231

36/36 [
accuracy: 0.

Epoch 00007:
Epoch 8/30
36/36 [

7678

val accuracy

1 - 247s 7s/step - loss: 0.5527 - accuracy: 0.7802 -

improved from 0.71231 to 0.76776, saving model to best model.h5

accuracy: 0.

Epoch 00008:
Epoch 9/30
36/36 [

7348

val accuracy

] - 245s 7s/step - loss: 0.4773 - accuracy: 0.8126 -

did not improve from 0.76776

accuracy: 0.

Epoch 00009:
Epoch 10/30
36/36 [

7834

val accuracy

] - 245s 7s/step - loss: 0.4603 - accuracy: 0.8136 -

improved from 0.76776 to 0.78336, saving model to best model.h5

accuracy: 0.

Epoch 00010:
Epoch 11/30

8336

val accuracy

] - 246s 7s/step - loss: 0.4241 - accuracy: 0.8310 -

improved from 0.78336 to 0.83362, saving model to best model.h5

36/36 [
accuracy: 0.

Epoch 00011:
Epoch 12/30

7938

val accuracy

] - 245s 7s/step - loss: 0.3908 - accuracy: 0.8414 -

did not improve from 0.83362

36/36 [
accuracy: 0.

Epoch 00012:
Epoch 13/30
36/36 [

8406

val accuracy

1 - 246s 7s/step - loss: 0.3299 - accuracy: 0.8647 -

improved from 0.83362 to 0.84055, saving model to best model.h5

accuracy: 0.

Epoch 00013:
Epoch 14/30
36/36 [

8458

val accuracy

] - 245s 7s/step - loss: 0.2996 - accuracy: 0.8751 -

improved from 0.84055 to 0.84575, saving model to best model.h5

accuracy: 0.

Epoch 00014:
Epoch 15/30
36/36 [

8458

val accuracy

] - 246s 7s/step - loss: 0.2962 - accuracy: 0.8826 -

did not improve from 0.84575

accuracy: 0.

Epoch 00015:
Epoch 16/30

8908

val accuracy

] - 246s 7s/step - loss: 0.2542 - accuracy: 0.9007 -

improved from 0.84575 to 0.89081, saving model to best model.h5

36/36 [
accuracy: 0.

Epoch 00016:
Epoch 17/30

8475

val accuracy

1 - 246s 7s/step - loss: 0.2264 - accuracy: 0.9130 -

36/36 [
accuracy: 0.

Epoch 00017:
Epoch 18/30
36/36 [

8700

val accuracy

accuracy: 0.

Epoch 00018:
Epoch 19/30
36/36 [

8804

val accuracy

accuracy: 0.

Epoch 00019:
Epoch 20/30
36/36 [

8787

val accuracy

did not improve from 0.89081

1 - 246s 7s/step - loss: 0.1868 - accuracy: 0.9250 -
did not improve from 0.89081

] - 243s 7s/step - loss: 0.1561 - accuracy: 0.9411 -
did not improve from 0.89081

1 - 243s 7s/step - loss: 0.2057 - accuracy: 0.9176 -
did not improve from 0.89081

] - 245s 7s/step - loss: 0.1566 - accuracy: 0.9411 -

accuracy: 0.

Epoch 00020:
Epoch 21/30

9185

val accuracy

improved from 0.89081 to 0.91854, saving model to best model.h5

36/36 [
accuracy: 0.

Epoch 00021:
Epoch 22/30

8908

val _accuracy

1 - 244s 7s/step - loss: 0.1509 - accuracy: 0.9481 -

did not improve from 0.91854

36/36 [
accuracy: 0.

Epoch 00022:

9133

val accuracy

] - 245s 7s/step - loss: 0.1453 - accuracy: 0.9537 -

did not improve from 0.91854

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

.5529

.5864

.4864

.4254

.4561

.3920

.3916

.3829

.3054

.3509

.3109

.3432

.2881

.2539

.3033

.2714

val_

val_

val_

val_

val

val

val

val

val

val

val_

val_

val_

val

val

val



Epoch 23/30
36/36 [ 1 - 244s 7s/step - loss: 0.1736 - accuracy: 0.9314 - val loss: 0.2806 - val
accuracy: 0.8943

Epoch 00023: val accuracy did not improve from 0.91854
Epoch 24/30

36/36 [ 1 - 243s 7s/step - loss: 0.1639 - accuracy: 0.9385 - val loss: 0.2538 - val
accuracy: 0.9220

Epoch 00024: val accuracy improved from 0.91854 to 0.92201, saving model to best model.h5
Epoch 25/30

36/36 [ 1 - 245s 7s/step - loss: 0.0928 - accuracy: 0.9623 - val loss: 0.2578 - val
accuracy: 0.9151

Epoch 00025: val accuracy did not improve from 0.92201
Epoch 26/30

36/36 [ ] - 245s 7s/step - loss: 0.0979 - accuracy: 0.9626 - val loss: 0.2342 - val
accuracy: 0.9116

Epoch 00026: val accuracy did not improve from 0.92201
Epoch 27/30

36/36 [ ] - 246s 7s/step - loss: 0.0972 - accuracy: 0.9649 - val loss: 0.2916 - val_
accuracy: 0.9064

Epoch 00027: val accuracy did not improve from 0.92201
Epoch 28/30

36/36 [ ] - 245s 7s/step - loss: 0.0894 - accuracy: 0.9704 - val loss: 0.2201 - val
accuracy: 0.9272

Epoch 00028: val accuracy improved from 0.92201 to 0.92721, saving model to best model.h5
Epoch 29/30

36/36 [ ] - 245s 7s/step - loss: 0.0770 - accuracy: 0.9732 - val loss: 0.3797 - val
accuracy: 0.8683

Epoch 00029: val accuracy did not improve from 0.92721
Epoch 30/30

36/36 [ ] - 245s 7s/step - loss: 0.0858 - accuracy: 0.9692 - val loss: 0.2176 - val
accuracy: 0.9376

Epoch 00030: val accuracy improved from 0.92721 to 0.93761, saving model to best model.h5

model.evaluate(X test,np.array(y test e))

13/13 [ 1 - 11s 807ms/step - loss: 4.0493 - accuracy: 0.6915
[4.049304485321045, 0.6915422677993774]

Convolutional Neural Network (CNN)

Model 2: CNN with Dropout after Convolution and having two Dense layers with 16 & 8 units respectively

Since CNN Model 1 does not appear to have good test accuracy and appears to be overfitting on the training dataset, let's use CNN Model 2,
which has a different architecture that should generalize well and not overfit.

class conv_Layers:

def init (self, nfilters, kernel size, stride=1,
pool size=2, leakyrelu slope=0.1, dropc=0.0, bnorm=False):
self.nfilters = nfilters
self.kernel_size = kernel_size
self.stride = stride
self.pool size = pool size
self.leakyrelu slope = leakyrelu slope
self.dropfrac = dropc
self.bnorm = bnorm

def call (self, x):
x = Conv2D(self.nfilters, kernel size=self.kernel size,
strides=self.stride, padding='same') (x)
x = LeakyReLU(self.leakyrelu slope) (x)
if (self.dropfrac > 0.0):
x = Dropout(self.dropfrac) (x)
if (self.bnorm):
X = BatchNormalization() (x)
X = MaxPool2D(self.pool size) (x)
return x



class dense Layers:

def init (self, nunits, leakyrelu slope=0.1, dropd=0.0, bnorm=False):
self.nunits = nunits
self.leakyrelu slope = leakyrelu slope
self.dropfrac = dropd
self.bnorm = bnorm

def call (self, x):
X Dense(self.nunits) (x)
x = LeakyReLU(self.leakyrelu slope) (x)
if (self.dropfrac > 0.0):
x = Dropout(self.dropfrac) (x)
if (self.bnorm):
X = BatchNormalization() (x)
return x

def LNmodel(in shape, conv filters, dense filters, kernel size, num classes, lr,
stride=1, pool size=2, leakyrelu slope=0.1, dropc=0.0, dropd=0.0, bnorm=False):

in shape = X train.shape[1l:]
i = Input(shape=in shape)
for ncl, nconvfilters in enumerate(conv filters):
if (ncl==0):
x = conv_Layers(nconvfilters, kernel size,
stride, pool size, leakyrelu slope, dropc, bnorm) (i)
else:
x = conv_Layers(nconvfilters, kernel size,
stride, pool size, leakyrelu slope, dropc, bnorm) (x)

x = Flatten() (x)

for ndl, ndunits in enumerate(dense filters):
x = dense Layers(ndunits, leakyrelu slope, dropd, bnorm) (x)

x = Dense(num classes, activation='softmax') (x)

1n_model = Model(inputs=i, outputs=x)

adam = optimizers.Adam(lr=1r)

1n_model.compile(loss='categorical crossentropy', optimizer=adam, metrics=['accuracy'l])
return 1n_model

1r = 0.001

kernelsize = 5

in shape= X train.shape[1:]

model 1n3 = LNmodel(in shape, [8,16], [16,8], kernelsize, 4, 1lr,
stride=1, pool size=2, leakyrelu slope=0.1, dropc=0.25,
dropd=0.5, bnorm=False)

model 1n3.summary()

Model: "model 5"

Layer (type) Output Shape Param #
input 6 (InputLayer) [(None, 150, 150, 1)] 0
conv2d 10 (Conv2D) (None, 150, 150, 8) 208
leaky re lu 17 (LeakyRelLU) (None, 150, 150, 8) 0
dropout 8 (Dropout) (None, 150, 150, 8) 0
max_pooling2d 7 (MaxPooling2 (None, 75, 75, 8) 0
conv2d 11 (Conv2D) (None, 75, 75, 16) 3216
leaky re lu 18 (LeakyRelLU) (None, 75, 75, 16) 0
dropout 9 (Dropout) (None, 75, 75, 16) 0
max_pooling2d 8 (MaxPooling2 (None, 37, 37, 16) 0
flatten 5 (Flatten) (None, 21904) 0
dense 12 (Dense) (None, 16) 350480
leaky re lu 19 (LeakyRelU) (None, 16) 0
dropout 10 (Dropout) (None, 16) 0
dense 13 (Dense) (None, 8) 136
leaky re lu 20 (LeakyRelU) (None, 8) 0

dropout 11 (Dropout) (None, 8) 0



dense 14 (Dense) (None, 4) 36

Total params: 354,076
Trainable params: 354,076
Non-trainable params: 0

@3S
mc

EarlyStopping(monitor='val loss', mode='min', verbose=1, patience=20)
ModelCheckpoint('best model.h5', monitor='val accuracy', mode='max', verbose=1l, save best only=True)

history model 1n3 = model ln3.fit(X train, y train e,
validation split=0.1,
verbose=1, batch size=256,
shuffle=True, epochs=60,callbacks=[es,mc])

Epoch 1/60
11/11 [ ] - 47s 4s/step - loss: 1.3705 - accuracy: 0.3164 - val loss: 1.3379 - val a
ccuracy: 0.5813

Epoch 00001: val accuracy improved from -inf to 0.58131, saving model to best model.h5

Epoch 2/60

11/11 [ ] - 46s 4s/step - loss: 1.2839 - accuracy: 0.3731 - val loss: 1.3757 - val a
ccuracy: 0.3702

Epoch 00002: val accuracy did not improve from 0.58131

Epoch 3/60

11/11 [ ] - 45s 4s/step - loss: 1.2383 - accuracy: 0.4029 - val loss: 1.2522 - val a
ccuracy: 0.7612

Epoch 00003: val accuracy improved from 0.58131 to 0.76125, saving model to best model.h5

Epoch 4/60

11/11 [ ] - 48s 4s/step - loss: 1.2123 - accuracy: 0.4020 - val loss: 1.1360 - val a
ccuracy: 0.8443

Epoch 00004: val accuracy improved from 0.76125 to 0.84429, saving model to best model.h5

Epoch 5/60

11/11 [ ] - 45s 4s/step - loss: 1.1890 - accuracy: 0.4030 - val loss: 1.1812 - val a
ccuracy: 0.8304

Epoch 00005: val accuracy did not improve from 0.84429

Epoch 6/60

11/11 [ ] - 45s 4s/step - loss: 1.1371 - accuracy: 0.4491 - val loss: 1.1282 - val a
ccuracy: 0.7785

Epoch 00006: val accuracy did not improve from 0.84429

Epoch 7/60

11/11 [ ] - 45s 4s/step - loss: 1.1019 - accuracy: 0.4793 - val loss: 1.0688 - val a
ccuracy: 0.8201

Epoch 00007: val accuracy did not improve from 0.84429

Epoch 8/60

11/11 [ 1 - 45s 4s/step - loss: 1.0705 - accuracy: 0.4792 - val loss: 0.9978 - val a
ccuracy: 0.7785

Epoch 00008: val accuracy did not improve from 0.84429

Epoch 9/60

11/11 [ ] - 45s 4s/step - loss: 1.0626 - accuracy: 0.4948 - val loss: 1.0221 - val a
ccuracy: 0.8166

Epoch 00009: val accuracy did not improve from 0.84429

Epoch 10/60

11/11 [ ] - 45s 4s/step - loss: 1.0476 - accuracy: 0.5062 - val loss: 0.9183 - val a
ccuracy: 0.8374

Epoch 00010: val accuracy did not improve from 0.84429

Epoch 11/60

11/11 [ ] - 45s 4s/step - loss: 1.0051 - accuracy: 0.5204 - val loss: 1.0510 - val_a
ccuracy: 0.8097

Epoch 00011: val accuracy did not improve from 0.84429

Epoch 12/60

11/11 [ ] - 45s 4s/step - loss: 0.9978 - accuracy: 0.5194 - val loss: 0.9376 - val a
ccuracy: 0.8028

Epoch 00012: val accuracy did not improve from 0.84429

Epoch 13/60

11/11 [ ] - 46s 4s/step - loss: 0.9921 - accuracy: 0.5275 - val loss: 0.8302 - val a
ccuracy: 0.8997

Epoch 00013: val accuracy improved from 0.84429 to 0.89965, saving model to best model.h5



Epoch 14/60
11/11 [

ccuracy: 0.7682

Epoch 00014: val accuracy
Epoch 15/60
11/11 [

did

not

1 - 46s 4s/step -

improve from 0.89965

ccuracy: 0.8512

Epoch 00015: val accuracy
Epoch 16/60
11/11 [

did

not

1 - 46s 4s/step -

improve from 0.89965

ccuracy: 0.8304

Epoch 00016: val accuracy
Epoch 17/60
11/11 [

did

not

1 - 45s 4s/step -

improve from 0.89965

ccuracy: 0.8478

Epoch 00017: val accuracy
Epoch 18/60

did

not

1 - 46s 4s/step -

improve from 0.89965

11/11 [
ccuracy: 0.8927

Epoch 00018: val accuracy
Epoch 19/60
11/11 [

did

not

1 - 48s 4s/step -

improve from 0.89965

ccuracy: 0.8651

Epoch 00019: val accuracy
Epoch 20/60
11/11 [

did

not

1 - 45s 4s/step -

improve from 0.89965

ccuracy: 0.9273

Epoch 00020: val accuracy
Epoch 21/60
11/11 [

improved from 0.89965 to 0.92734,

ccuracy: 0.8997

Epoch 00021: val accuracy
Epoch 22/60
11/11 [

did

not

improve from 0.92734

ccuracy: 0.8893

Epoch 00022: val accuracy
Epoch 23/60

did

not

1 - 45s 4s/step -

improve from 0.92734

11/11 [
ccuracy: 0.8339

Epoch 00023: val accuracy
Epoch 24/60
11/11 [

did

not

1 - 45s 4s/step -

improve from 0.92734

ccuracy: 0.9135

Epoch 00024: val accuracy
Epoch 25/60
11/11 [

did

not

1 - 45s 4s/step -

improve from 0.92734

ccuracy: 0.9273

Epoch 00025: val accuracy
Epoch 26/60
11/11 [

did

not

1 - 45s 4s/step -

improve from 0.92734

ccuracy: 0.8789

Epoch 00026: val accuracy
Epoch 27/60
11/11 [

did

not

] - 46s 4s/step -

improve from 0.92734

ccuracy: 0.8754

Epoch 00027: val accuracy
Epoch 28/60

did

not

1 - 46s 4s/step -

improve from 0.92734

11/11 [
ccuracy: 0.8374

Epoch 00028: val accuracy
Epoch 29/60
11/11 [

did

not

1 - 46s 4s/step -

improve from 0.92734

ccuracy: 0.9100

Epoch 00029: val accuracy
Epoch 30/60
11/11 [

did

not

1 - 45s 4s/step -

improve from 0.92734

ccuracy: 0.8685

1 - 45s 4s/step -

loss:

loss:

loss:

loss:

loss:

loss:

] - 46s 4s/step - loss:

1 - 45s 4s/step - loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

0.9412 - accuracy: 0.5499
0.9342 - accuracy: 0.5665
0.9022 - accuracy: 0.5663
0.8916 - accuracy: 0.5876
0.8820 - accuracy: 0.5792
0.8314 - accuracy: 0.6177
0.8453 - accuracy: 0.6254

saving model to best model.

0.8087 - accuracy: 0.6476
0.7597 - accuracy: 0.6588
0.7553 - accuracy: 0.6507
0.7433 - accuracy: 0.6638
0.7381 - accuracy: 0.6747
0.7241 - accuracy: 0.6709
0.6917 - accuracy: 0.6833
0.6781 - accuracy: 0.7068
0.6374 - accuracy: 0.7142
0.6560 - accuracy: 0.7117

- val loss:

- val loss:

- val loss:

- val loss:

- val loss:

- val_loss:

- val_loss:

h5

- val_loss:

- val loss:

- val loss:

- val loss:

- val loss:

- val loss:

- val loss:

- val_loss:

- val_loss:

- val_loss:

.9101

.7685

.8105

.8017

.6499

L7377

.4269

.5864

.5198

.6647

.4627

.4081

.4913

.5234

.5845

.5318

.5590

val a

val a

val a

val a

val a

val a

val a

val a

val a

val a

val a

val a

val a

val a

val a

val a

val a



Epoch 00030: val accuracy
Epoch 31/60
11/11 [

did

not

improve from 0.92734

ccuracy: 0.8789

Epoch 00031: val accuracy
Epoch 32/60
11/11 [

did

not

1 - 45s 4s/step -

improve from 0.92734

ccuracy: 0.8997

Epoch 00032: val accuracy
Epoch 33/60

did

not

1 - 45s 4s/step -

improve from 0.92734

11/11 [
ccuracy: 0.8685

Epoch 00033: val accuracy
Epoch 34/60

did

not

1 - 45s 4s/step -

improve from 0.92734

11/11 [
ccuracy: 0.8651

Epoch 00034: val accuracy
Epoch 35/60
11/11 [

did

not

1 - 45s 4s/step -

improve from 0.92734

ccuracy: 0.8893

Epoch 00035: val accuracy
Epoch 36/60
11/11 [

did

not

1 - 45s 4s/step -

improve from 0.92734

ccuracy: 0.8858

Epoch 00036: val accuracy
Epoch 37/60
11/11 [

did

not

1 - 45s 4s/step -

improve from 0.92734

ccuracy: 0.9377

Epoch 00037: val accuracy
Epoch 38/60

1 - 45s 4s/step -

improved from 0.92734 to 0.93772,

11/11 [
ccuracy: 0.8962

Epoch 00038: val accuracy
Epoch 39/60

did

not

improve from 0.93772

11/11 [
ccuracy: 0.9343

Epoch 00039: val accuracy
Epoch 40/60
11/11 [

did

not

1 - 45s 4s/step -

improve from 0.93772

ccuracy: 0.9377

Epoch 00040: val accuracy
Epoch 41/60
11/11 [

did

not

1 - 45s 4s/step -

improve from 0.93772

ccuracy: 0.9273

Epoch 00041: val accuracy
Epoch 42/60
11/11 [

did

not

1 - 46s 4s/step -

improve from 0.93772

ccuracy: 0.9031

Epoch 00042: val accuracy
Epoch 43/60

did

not

1 - 46s 4s/step -

improve from 0.93772

11/11 [
ccuracy: 0.9066

Epoch 00043: val accuracy
Epoch 44/60

did

not

1 - 46s 4s/step -

improve from 0.93772

11/11 [
ccuracy: 0.9135

Epoch 00044: val accuracy
Epoch 45/60
11/11 [

did

not

1 - 46s 4s/step -

improve from 0.93772

ccuracy: 0.9585

Epoch 00045: val accuracy
Epoch 46/60
11/11 [

improved from 0.93772 to 0.95848,

ccuracy: 0.9273

Epoch 00046: val accuracy
Epoch 47/60

did not improve from 0.95848

loss:

loss:

loss:

loss:

loss:

loss:

loss:

1 - 45s 4s/step - loss:

loss:

loss:

loss:

loss:

loss:

loss:

] - 45s 4s/step - loss:

] - 48s 4s/step - loss:

0.6452 - accuracy: 0.7163
0.6472 - accuracy: 0.7076
0.6160 - accuracy: 0.7390
0.6095 - accuracy: 0.7236
0.6169 - accuracy: 0.7286
0.5921 - accuracy: 0.7427
0.5959 - accuracy: 0.7367

saving model to best_model.

0.5583 - accuracy: 0.7574
0.5825 - accuracy: 0.7418
0.5306 - accuracy: 0.7879
0.5560 - accuracy: 0.7704
0.5405 - accuracy: 0.7716
0.5484 - accuracy: 0.7593
0.5058 - accuracy: 0.7827
0.5260 - accuracy: 0.7697

saving model to best model.

0.5209 - accuracy: 0.7825

- val_loss:

- val_loss:

- val loss:

- val loss:

- val loss:

- val loss:

- val loss:

h5

- val _loss:

- val_loss:

- val_loss:

- val_loss:

- val_loss:

- val loss:

- val loss:

- val loss:

h5

- val loss:

.4844

.3750

.4628

.5180

.4178

. 4645

.2731

.3996

.3279

.2734

.3186

.4026

.3695

.3230

.2114

.3290

val a

val a

val a

val a

val a

val a

val a

val a

val a

val a

val a

val a

val a

val a

val a

val a



11/11 [

ccuracy: 0.8858

Epoch 00047: val accuracy
Epoch 48/60
11/11 [

did

not

1 - 45s 4s/step -

improve from 0.95848

ccuracy: 0.9031

Epoch 00048: val accuracy
Epoch 49/60

did

not

1 - 45s 4s/step -

improve from 0.95848

11/11 [
ccuracy: 0.9204

Epoch 00049: val accuracy
Epoch 50/60
11/11 [

did

not

1 - 45s 4s/step -

improve from 0.95848

ccuracy: 0.9135

Epoch 00050: val accuracy
Epoch 51/60
11/11 [

did

not

1 - 46s 4s/step -

improve from 0.95848

ccuracy: 0.9377

Epoch 00051: val accuracy
Epoch 52/60
11/11 [

did

not

1 - 46s 4s/step -

improve from 0.95848

ccuracy: 0.9100

Epoch 00052: val accuracy
Epoch 53/60
11/11 [

did

not

1 - 46s 4s/step -

improve from 0.95848

ccuracy: 0.9343

Epoch 00053: val accuracy
Epoch 54/60

did

not

1 - 46s 4s/step -

improve from 0.95848

11/11 [
ccuracy: 0.8962

Epoch 00054: val accuracy
Epoch 55/60

did

not

1 - 46s 4s/step -

improve from 0.95848

11/11 [
ccuracy: 0.9031

Epoch 00055: val accuracy
Epoch 56/60
11/11 [

did

not

1 - 45s 4s/step -

improve from 0.95848

ccuracy: 0.9308

Epoch 00056: val accuracy
Epoch 57/60
11/11 [

did

not

1 - 45s 4s/step -

improve from 0.95848

ccuracy: 0.9343

Epoch 00057: val accuracy
Epoch 58/60
11/11 [

did

not

1 - 45s 4s/step -

improve from 0.95848

ccuracy: 0.8616

Epoch 00058: val accuracy
Epoch 59/60

did

not

1 - 46s 4s/step -

improve from 0.95848

11/11 [
ccuracy: 0.9273

Epoch 00059: val accuracy
Epoch 60/60

did

not

1 - 46s 4s/step -

improve from 0.95848

11/11 [
ccuracy: 0.9031

Epoch 00060: val accuracy

did

not

1 - 45s 4s/step -

improve from 0.95848

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.4950

.5102

4737

.4752

.4718

.4591

.4436

L4212

.4284

.4278

.3913

.3778

.3933

.3806

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

.7837

.7820

.8015

.7988

.7965

.8159

.8175

.8236

.8352

.8158

.8391

.8417

.8294

.8598

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:
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.2184

.2867
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This model unfortunately does not have a good test accuracy, and it appears to be underfitting on the training dataset. That means we
need to increase the complexity of the model in our next attempt.

Convolutional Neural Network (CNN)

Model 3: CNN with Dropout after Convolution and having two Dense layers with 512 & 256 Units respectively

1r = 0.001
kernelsize = 5



model 1n4 = LNmodel(in shape, [8,16], [512,256], kernelsize, 4, 1r,
stride=1, pool size=2, leakyrelu slope=0.1, dropc=0.25,
dropd=0.5, bnorm=False)

model 1n4.summary ()

Model: "model 6"

Layer (type) Output Shape Param #
input 7 (InputLayer) [(None, 150, 150, 1)] 0
conv2d 12 (Conv2D) (None, 150, 150, 8) 208
leaky re lu_21 (LeakyRelLU) (None, 150, 150, 8) 0
dropout 12 (Dropout) (None, 150, 150, 8) 0
max_pooling2d 9 (MaxPooling2 (None, 75, 75, 8) 0
conv2d 13 (Conv2D) (None, 75, 75, 16) 3216
leaky re lu 22 (LeakyRelLU) (None, 75, 75, 16) 0
dropout 13 (Dropout) (None, 75, 75, 16) 0
max_pooling2d 10 (MaxPooling (None, 37, 37, 16) 0
flatten 6 (Flatten) (None, 21904) 0
dense_15 (Dense) (None, 512) 11215360
leaky re lu 23 (LeakyRelLU) (None, 512) 0
dropout 14 (Dropout) (None, 512) 0

dense 16 (Dense) (None, 256) 131328
leaky re lu 24 (LeakyRelU) (None, 256) 0
dropout 15 (Dropout) (None, 256) 0

dense 17 (Dense) (None, 4) 1028

Total params: 11,351,140
Trainable params: 11,351,140
Non-trainable params: 0

es
mc

EarlyStopping(monitor='val loss', mode='min', verbose=1, patience=20)
ModelCheckpoint('best model.h5', monitor='val accuracy', mode='max', verbose=1l, save best only=True)

history model 1n4 = model 1n4.fit(X train, y train_e,
validation split=0.1,
verbose=1, batch size=512,
shuffle=True, epochs=40,callbacks=[es,mc])

Epoch 1/40
6/6 [ ] - 50s 8s/step - loss: 1.0857 - accuracy: 0.5147 - val loss: 1.5517 - val acc
uracy: 0.3149

Epoch 00001: val accuracy improved from -inf to 0.31488, saving model to best model.h5

Epoch 2/40

6/6 [ ] - 50s 8s/step - loss: 0.9277 - accuracy: 0.5868 - val loss: 0.9219 - val acc
uracy: 0.8097

Epoch 00002: val accuracy improved from 0.31488 to 0.80969, saving model to best model.h5

Epoch 3/40

6/6 [ ] - 50s 8s/step - loss: 0.7879 - accuracy: 0.6539 - val loss: 0.7665 - val acc
uracy: 0.8201

Epoch 00003: val accuracy improved from 0.80969 to 0.82007, saving model to best model.h5

Epoch 4/40

6/6 [ ] - 50s 8s/step - loss: 0.7011 - accuracy: 0.6948 - val loss: 0.7414 - val acc
uracy: 0.7716

Epoch 00004: val accuracy did not improve from 0.82007

Epoch 5/40

6/6 [ ] - 50s 8s/step - loss: 0.6169 - accuracy: 0.7311 - val loss: 0.7731 - val acc
uracy: 0.7958

Epoch 00005: val accuracy did not improve from 0.82007



Epoch
6/6 [

uracy:

Epoch
Epoch
6/6 [

uracy:

Epoch
Epoch
6/6 [

uracy:

Epoch
Epoch
6/6 [

uracy:

Epoch
Epoch
6/6 [

uracy:

Epoch
Epoch
6/6 [

uracy:

Epoch
Epoch
6/6 [

uracy:

Epoch
Epoch
6/6 [

uracy:

Epoch
Epoch
6/6 [

uracy:

Epoch
Epoch
6/6 [

uracy:

Epoch
Epoch
6/6 [

uracy:

Epoch
Epoch
6/6 [

uracy:

Epoch
Epoch
6/6 [

uracy:

Epoch
Epoch
6/6 [

uracy:

Epoch
Epoch
6/6 [

uracy:

Epoch
Epoch
6/6 [

uracy:
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Epoch
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6/40

0.8443

00006: val accuracy
7/40

improved from 0.82007 to 0.84429, saving model to best model.

0.9308

00007: val accuracy
8/40

improved from 0.84429 to 0.93080, saving model to best model.

0.8478

00008: val accuracy
9/40

did not improve from 0.93080

0.9377

00009: val accuracy
10/40

improved from 0.93080 to 0.93772, saving model to best model.

0.9066

00010: val accuracy
11/40

did

not

improve from 0.93772

0.9135

00011: val accuracy
12/40

did

not

improve from 0.93772

0.9135

00012: val accuracy
13/40

did

not

improve from 0.93772

0.8997

00013: val accuracy
14/40

did

not

improve from 0.93772

0.9204

00014: val accuracy
15/40

did

not

improve from 0.93772

0.9239

00015: val accuracy
16/40

did

not

improve from 0.93772

0.9343

00016: val accuracy
17740

did

not

improve from 0.93772

0.8754

00017: val accuracy
18/40

did

not

improve from 0.93772

0.9481

00018: val accuracy
19/40

improved from 0.93772 to 0.94810, saving model to best model.

0.9170

00019: val accuracy
20/40

did not improve from 0.94810

0.9343

00020: val accuracy
21/40

did not improve from 0.94810

0.9550

00021: val accuracy
22/40

improved from 0.94810 to 0.95502, saving model to best model.

0.9273
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Epoch 00022: val accuracy did not improve from 0.95502

Epoch 23/40

6/6 [ ] - 49s 8s/step - loss: 0.0923 - accuracy: 0.9676 - val loss: 0.1783 - val acc
uracy: 0.9481

Epoch 00023: val accuracy did not improve from 0.95502

Epoch 24/40

6/6 [ ] - 51s 8s/step - loss: 0.0601 - accuracy: 0.9846 - val loss: 0.1802 - val acc
uracy: 0.9585

Epoch 00024: val accuracy improved from 0.95502 to 0.95848, saving model to best model.h5

Epoch 25/40

6/6 [ ] - 50s 8s/step - loss: 0.0571 - accuracy: 0.9842 - val loss: 0.2453 - val_acc
uracy: 0.9308

Epoch 00025: val accuracy did not improve from 0.95848

Epoch 26/40

6/6 [ ] - 49s 8s/step - loss: 0.0574 - accuracy: 0.9826 - val loss: 0.1726 - val acc
uracy: 0.9550

Epoch 00026: val accuracy did not improve from 0.95848

Epoch 27/40

6/6 [ ] - 49s 8s/step - loss: 0.0406 - accuracy: 0.9861 - val loss: 0.1922 - val acc
uracy: 0.9481

Epoch 00027: val accuracy did not improve from 0.95848

Epoch 28/40

6/6 [ ] - 49s 8s/step - loss: 0.0357 - accuracy: 0.9888 - val loss: 0.2127 - val acc
uracy: 0.9481

Epoch 00028: val accuracy did not improve from 0.95848

Epoch 29/40

6/6 [ ] - 49s 8s/step - loss: 0.0271 - accuracy: 0.9931 - val loss: 0.2286 - val acc
uracy: 0.9446

Epoch 00029: val accuracy did not improve from 0.95848

Epoch 30/40

6/6 [ ] - 49s 8s/step - loss: 0.0265 - accuracy: 0.9907 - val loss: 0.2496 - val acc
uracy: 0.9239

Epoch 00030: val accuracy did not improve from 0.95848

Epoch 31/40

6/6 [ ] - 49s 8s/step - loss: 0.0322 - accuracy: 0.9877 - val loss: 0.1698 - val acc
uracy: 0.9550

Epoch 00031: val accuracy did not improve from 0.95848

Epoch 32/40

6/6 [ ] - 49s 8s/step - loss: 0.0342 - accuracy: 0.9888 - val loss: 0.2032 - val acc
uracy: 0.9446

Epoch 00032: val accuracy did not improve from 0.95848

Epoch 33/40

6/6 [ ] - 49s 8s/step - loss: 0.0425 - accuracy: 0.9880 - val_loss: 0.2496 - val_acc
uracy: 0.9308

Epoch 00033: val accuracy did not improve from 0.95848

Epoch 34/40

6/6 [ ] - 49s 8s/step - loss: 0.0263 - accuracy: 0.9938 - val loss: 0.2398 - val acc
uracy: 0.9412

Epoch 00034: val accuracy did not improve from 0.95848

Epoch 35/40

6/6 [ ] - 49s 8s/step - loss: 0.0243 - accuracy: 0.9954 - val_loss: 0.2062 - val_acc
uracy: 0.9516

Epoch 00035: val accuracy did not improve from 0.95848

Epoch 36/40

6/6 [ ] - 49s 8s/step - loss: 0.0231 - accuracy: 0.9927 - val loss: 0.2284 - val acc
uracy: 0.9412

Epoch 00036: val accuracy did not improve from 0.95848

Epoch 37/40

6/6 [ ] - 50s 8s/step - loss: 0.0203 - accuracy: 0.9950 - val loss: 0.2200 - val acc
uracy: 0.9516

Epoch 00037: val accuracy did not improve from 0.95848

Epoch 38/40

6/6 [ ] - 49s 8s/step - loss: 0.0167 - accuracy: 0.9958 - val loss: 0.1870 - val acc
uracy: 0.9585

Epoch 00038: val accuracy did not improve from 0.95848
Epoch 39/40



6/6 [ ] - 49s 8s/step - loss: 0.0157 - accuracy: 0.9969 - val loss: 0.1920 - val acc
uracy: 0.9585

Epoch 00039: val accuracy did not improve from 0.95848
Epoch 40/40

6/6 [ ] - 49s 8s/step - loss: 0.0115 - accuracy: 0.9965 - val loss: 0.1988 - val acc
uracy: 0.9550

Epoch 00040: val accuracy did not improve from 0.95848

Plotting the Train & Test Accuracy

CNN Model 1

print(history.history.keys())

# summarize history for accuracy
plt.plot(history.history['accuracy'])
plt.plot(history.history['val accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')
plt.show()

dict keys(['loss', 'accuracy', 'val loss', 'val accuracy'l)

model accuracy
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CNN Model 2

print(history model 1n3.history.keys())

# summarize history for accuracy
plt.plot(history model 1n3.history['accuracy'l])
plt.plot(history model 1n3.history['val accuracy'])
plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')
plt.show()

dict keys(['loss', 'accuracy', 'val loss', 'val accuracy'l])
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CNN Model 3

print(history model 1n4.history.keys())

# summarize history for accuracy
plt.plot(history model ln4.history['accuracy'])
plt.plot(history model ln4.history['val accuracy'])
plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')
plt.show()

dict keys(['loss', 'accuracy', 'val loss', 'val accuracy'])
model accuracy
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Model Evaluation

CNN Model 1

model.evaluate(X test,y test e)

13/13 [ ] - 10s 747ms/step - loss: 4.8989 - accuracy: 0.6866
[4.8988800048828125, 0.6865671873092651]

CNN Model 2

model ln3.evaluate(X test,y test e)

13/13 [ ] - 2s 143ms/step - loss: 1.5445 - accuracy: 0.7463
[1.544519066810608, 0.746268630027771]

CNN Model 3

model 1ln4.evaluate(X test,y test e)

13/13 [ 1 - 2s 156ms/step - loss: 2.3007 - accuracy: 0.7637
[2.3007419109344482, 0.7636815905570984]

Unfortunately, we cannot decide the best model based on test accuracy here because we are dealing with an imbalanced dataset, so we
are more concerned with Precision and Recall. Since these two metrics are both quite important in this scenario, we will also check the F1
score to try to achieve a good balance between Precision and Recall.

Plotting the confusion matrix for the two best models

As we can see Model 2 and Model 3 seem to he aeneralizina well hecaiise thev hoth have a anod Holdout set Acciiracy Let us comniuite



Negatives

CNN Model 2

# Test Prediction

y test pred 1n3 = model 1n3.predict(X test)

y test pred classes 1n3 = np.argmax(y test pred 1n3, axis=1l)
y test pred prob 1n3 = np.max(y test pred 1n3, axis=1)

# Test Accuracy

import seaborn as sns

from sklearn.metrics import accuracy score, confusion matrix
accuracy score(np.array(y test), y test pred classes 1n3)

0.746268656716418

cf matrix = confusion matrix(np.array(y test), y test pred classes 1n3)

# Confusion matrix normalized per category true value
cf matrix nl = cf matrix/np.sum(cf matrix, axis=1)
plt.figure(figsize=(8,6))

ey e o= - g —— -

sns.heatmap(cf matrix nl, xticklabels=CATEGORIES, yticklabels=CATEGORIES, annot=True)

<matplotlib.axes. subplots.AxesSubplot at 0x7fb28293e630>
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CNN Model 3

#Test Prediction

y_test pred_1ln4 = model ln4.predict(X test)
y test pred classes 1n4 = np.argmax(y test pred ln4, axis=1)
y test pred prob 1n4 = np.max(y test pred 1n4, axis=1)

import seaborn as sns
from sklearn.metrics import accuracy score, confusion matrix
accuracy score(np.array(y test), y test pred classes 1ln4)

0.763681592039801

cf matrix = confusion matrix(np.array(y test), y test pred classes 1ln4)

# Confusion matrix normalized per category true value
cf matrix nl = cf matrix/np.sum(cf matrix, axis=1)
plt.figure(figsize=(8,6))

sns.heatmap(cf matrix nl, xticklabels=CATEGORIES, yticklabels=CATEGORIES, annot=True)
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<matplotlib.axes. subplots.AxesSubplot at 0x7fb27e918588>
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The above two confusion matrices show that the models seem to be working well. Let's calculate the F1 score (the harmonic mean of
precision and recall), which is used as an evaluation metric for imbalanced datasets.

Classification Report for each class
e Precision: precision is the fraction of relevant instances among the retrieved instances.
e Recall: recall is the fraction of relevant instances that were retrieved.

o F-beta score: The F-beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its worst
value at 0. The beta parameter determines the weight of recall in the combined score.

The order of printing the above metrices for each class is as follows:

e Glioma Tumor

e Meningioma Tumor
e Non Tumor

e Pituitary Tumor

CNN Model 2

from sklearn.metrics import precision recall fscore support

p=precision recall fscore support(np.array(y test), y test pred classes 1n3, average=None, labels=list(np.unique/(y

print(" Precision is {}\n Recall is {} \n f beta Score is {}".format(p[0],p[1],p[2]))
Precision is [0.7037037 0.73287671 0.72258065 0.83783784]

Recall is [0.19 0.93043478 0.99115044 0.83783784]
f_beta Score is [0.2992126 0.81992337 0.8358209 0.83783784]

CNN Model 3

from sklearn.metrics import precision recall fscore support

p=precision recall fscore support(np.array(y test), y test pred classes 1n4, average=None, labels=1list(np.unique()

print(" Precision is {}\n Recall is {} \n f _beta Score is {}".format(p[01,p[1l],p[2]))

Precision is [0.80769231 0.72435897 0.74834437 0.86956522]
Recall is [0.21 0.9826087 1. 0.81081081]
f _beta Score is [0.33333333 0.83394834 0.85606061 0.83916084]

Model 3 (Best) Observation

As we see from the precision for each class, the Pituitary tumor classifier has the highest precision. But here, we are more concerned about



the case where a person who has a tumor is wrongly classified as belonging to the non-tumor category (False Negative).

33% of the persons belonging to Glioma tumour and 8.6% belonging to Meningioma tumor are not identified correctly, and the
model predicts that they don't have a tumor at all - which shows that our model does not do well in identifying glioma and meningioma
tumors. But it is works well for the other scenario, where the model is able to correctly identify those scans that do not not show a tumor.

Weighted F-Score

Model 2

from sklearn.metrics import fl score

fl score(np.array(y test), y test pred classes 1ln3, average='weighted')

0.6981597233234159

Model 3

from sklearn.metrics import fl score

fl score(np.array(y test), y test pred classes 1ln4, average='weighted')

0.7165923954146127

Model 3 with 2 Dense layer and more number of units having better F1 score.

Prediction

Let us predict with best model with is model_In4

#fn = image.load img(fp, target size = (150,150), color mode='grayscale')
plt.imshow(X test[1].reshape(150,150), cmap='Greys r')
i=y test[1]
i=np.argmax(i)
if(i == 0):
plt.title("glioma tumor")
if(i==1):
plt.title("meningioma tumor")
if(i==2):
plt.title("no tumor")
if(i==3):
plt.title("pituitary tumor")

plt.axis('off")
plt.show()

pituitary_tumor

res=model ln4.predict(X test[1l].reshape(1,150,150,1))

i=np.argmax(res)

if(i == 0):



print("glioma tumor")
if(i==1):

print("meningioma tumor")
if(i==2):

print("no tumor")
if(i==3):

print("pituitary tumor")

pituitary tumor

Conclusion

Conclusions

Brain Tumor Classification Using Deep Learning Algorithms

Importance of Automation in MRI Analysis:

Brain tumors, being highly aggressive, require precise diagnostics. Manual MRI image analysis by neurosurgeons is time-consuming and
prone to errors. An automated system using deep learning can significantly improve the accuracy and speed of brain tumor classification,
aiding in early and effective treatment. Dataset and Preprocessing:

The dataset consists of MRI images categorized into four types: glioma tumor, meningioma tumor, pituitary tumor, and no tumor. The images
were preprocessed by converting them to grayscale and resizing them to standard dimensions, reducing complexity and computational load.
Imbalanced Dataset:

The dataset is imbalanced, with a higher proportion of tumor images compared to non-tumor images. This imbalance can impact the model's
performance, necessitating careful evaluation metrics beyond just accuracy. Model Performance:

Three models were built and evaluated: ANN (Artificial Neural Network): The ANN model showed poor performance with a test accuracy of
70.65%, as it failed to capture the spatial correlations in the images. CNN Model 1: This model included dropout layers but showed a test
accuracy of 68.66%, indicating overfitting on the training data. CNN Model 2: This model, with different convolution and dense layers,
achieved a better test accuracy of 74.63% and demonstrated good generalization. CNN Model 3: The best performing model with more
complex architecture, achieved a test accuracy of 76.37% and a higher F1 score, indicating better balance between precision and recall.
Evaluation Metrics:

The confusion matrices and classification reports for CNN Models 2 and 3 revealed that these models performed well in identifying most
tumor types but struggled with glioma and meningioma tumors. The weighted F1 score was higher for CNN Model 3, making it the best model
among the three. Future Improvements:

Hyperparameter Tuning: Further tuning of the hyperparameters and exploring different architectures could enhance the model's performance.
Addressing Imbalance: Techniques such as oversampling the minority class or using class-weighted loss functions can help mitigate the
impact of the imbalanced dataset. Filter Visualization: Visualizing the convolutional filters can provide insights into why the model struggles
with certain tumor types, guiding further refinements. Overall Conclusion:

CNNs outperform ANNSs for image data due to their ability to maintain the spatial structure of images. While the current models show
promising results, there is potential for further improvement to achieve more reliable and accurate brain tumor classification. By leveraging
advanced deep learning techniques, we can enhance the diagnostic process for brain tumors, ultimately contributing to better patient
outcomes through timely and precise treatment interventions.



